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Abbrevations

LIST OF ABBREVIATIONS
ACQ AcqKnowledge data file format (Biopac Inc.)
ANS Autonomic nervous system
ApEn Approximate Entropy
AR Autoregressive (model or process)
ASCII Text file using the ASCII character set, which is the most common format for English-

language text files
CSV Comma separated value (file format)
DFA Detrended fluctuation analysis
ECG Electrocardiogram
EDF European data format (file format)
EDR ECG derived respiration
FFT Fast Fourier transform
GDF General data format (file format)
GUI Graphical user interface
HF High frequency (refers to HRV frequency band, by default 0.15-0.4 Hz)
HR Heart rate
HRV Heart rate variability
IBI Inter-beat-interval (same as RR interval)
LF Low frequency (refers to HRV frequency band, by default 0.04-0.15 Hz)
MAT MATLAB data file format (Mathworks Inc.)
MSE Multiscale entropy
NNxx Number of successive RR interval pairs that differ more than xx msec
PDF Portable document format (file format)
pNNxx Relative number of successive RR interval pairs that differ more than xx msec
PNS Parasympathetic nervous system
PPG Photoplethysmogram (measurement of blood volume changes)
QRS QRS complex of electrocardiogram
RMSSD Root mean square of successive RR interval differences
RPA Recurrence plot analysis
RR Time interval between successive ECG R-waves (RR interval, same as IBI)
SampEn Sample entropy
ShanEn Shannon entropy
SDANN Standard deviation of the averages of RR intervals in 5-min segments
SDNN Standard deviation of normal-to-normal RR intervals
SDNNI Mean of the standard deviations of RR intervals in 5-min segments
SI Stress index
SNS Sympathetic nervous system
SPSS Statistical analysis software package(IBM Corp.)
TINN Triangular interpolation of normal-to-normal intervals
VLF Very low frequency (refers to HRV frequency band, by default 0-0.04 Hz)
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Chapter 1

Overview

1.1 About Kubios HRV
Kubios HRV is an advanced tool for studying the variability of heart beat intervals. Due to its wide variety
of different analysis options and the easy-to-use interface, the software is suitable for researchers and
clinicians with varying premises. The software is suitable for clinical and public health researchers,
professionals working on human or animal well-being, or sports enthusiasts; for anybody who want to
perform detailed analyses on heart rate variability, e.g. to examine autonomic nervous system function.
The software is mainly designed for the analysis of human HRV, but it can also be used for animal
research by taking into account necessary differences in analysis settings.

The first versions of the Kubios HRV were developed as part of academic research work carried out
at the Department of Applied Physics, University of Eastern Finland, Kuopio, Finland. The first version
of the software was released in 2004 and is described in [36]

Niskanen J-P, Tarvainen MP, Ranta-aho PO, and Karjalainen PA. Software for advanced HRV analysis. Comp
Meth Programs Biomed, 76(1):73-81, 2004.

The last version of Kubios HRV developed at University of Eastern Finland (version 2.2) was released
in May 2014 and is described in [53]

Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-aho PO, and Karjalainen PA. Kubios HRV – Heart rate
variability analysis software. Comp Meth Programs Biomed, 113(1):210-220, 2014.

Kubios Oy (limited company) is a medical technology company focusing on software and algorithms
development for medical signal analysis. The company was founded in 2016 by the developers of Kubios
HRV software and will be responsible for further development and distribution of the software. Kubios
HRV is the most popular HRV analysis software for scientific research, being used in over 800 scientific
studies by now. In addition, Kubios HRV has gained popularity among athletes and people who are
motivated in monitoring their well-being.

The first commercial version of Kubios HRV (version 3.0) was released in Jan 2017. Kubios HRV is
available as two alternative products: Kubios HRV Standard and Kubios HRV Premium. Both versions
include all the commonly used time- and frequency-domain variables of HRV as well as a few most com-
monly utilised nonlinear analysis methods. The differences between Standard and Premium versions
are summarised in the following (for details, see Table 1.1):

Kubios HRV Standard: Freeware HRV analysis software for non-commercial research and per-
sonal use. Supports HR data from most common HR monitor manufacturers and computes most
commonly used time- and frequency-domain HRV parameters. Software is operated through an
easy-to-use GUI and analysis results can be saved as PDF report or text file.

Kubios HRV Premium: Full featured HRV analysis software for scientific research and profes-
sional use. Supports wide range of ECG and HR data as well as PPG (pulse wave) data and
computes all commonly used time-domain, frequency-domain and nonlinear HRV parameters. In
addition, Kubios HRV Premium includes time-varying analysis options and support for group anal-
yses. Software is operated through an easy-to-use GUI and analysis results can be saved as
illustrative PDF reports, CSV text file or MATLAB MAT file.
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1.2. Release notes 6

Table 1.1: Summary of Kubios HRV Standard and Kubios HRV Premium features

FEATURES HRV Standard HRV Premium

Data support
• Inter-beat-interval (IBI) data from HR monitors (Polar, Suunto & Garmin) or
text file
• Electrocardiogram (ECG) data in EDF/EDF+, GDF, Biopac ACQ3, ISHNE
ECG, Cardiology XML, and text file formats

−

• Support for ActiHeart & ActiWave Cardio, eMotion Faros, and Zephyr BioHar-
ness data files

−

• Support for photoplethysmogram (PPG) data in EDF/EDF+, Biopac ACQ3
and text file formats

−

Pre-processing
• QRS detector for accurate detection of beat-to-beat RR intervals from ECG
data

−

• Artefact correction methods: Threshold based RR correction algorithm / Au-
tomatic RR correction algorithm / ECG based R-wave correction

/ − / − / /

•Trend removal from RR interval time series

Analysis options
• Stress index, PNS index and SNS index
• Time-domain parameters: Mean RR and HR, min/max HR, SDNN, RMSSD,
pNN50, HRV triangular index, TINN etc.
• Frequency-domain parameters: VLF, LF and HF band powers (in absolute,
relative and normalised units), peak frequencies and LF/HF ratio
• Spectrum estimation methods: Welch’s periodogram / Lomb-Scargle peri-
odogram / AR spectrum estimate

/ − / / /

• Basic nonlinear parameters: Poincaré plot, approximate entropy (ApEn),
sample entropy (SampEn) and detrended fluctuation analysis (DFA)
• Additional nonlinear parameters: correlation dimension (D2), recurrence plot
analysis (RPA), multiscale entropy (MSE)

−

• ECG derived respiration for accurate respiratory sinus arrhythmia (RSA) anal-
ysis

−

• Time-varying analysis: time trends for stress and PNS/SNS indexes, time-
domain and frequency-domain parameters, spectrogram and Kalman smoother
based time-varying spectrum estimates

−

Reports and results export
• HRV reports (PDF reports) including: time-domain, frequency-domain and
nonlinear results / Time-varying analysis results

/ − /

• ECG print (PDF report) showing the raw ECG trace for selected time period −
• HRV analysis results export options: PDF file / Text file / MATLAB MAT file / / − / /
• “SPSS friendly” batch file export (ideal for group analyses or repeated mea-
surements)

−

1.2 Release notes
In this section, a summary of the release notes are given showing only the most significant updates and
changes made in Kubios HRV. For more details see the release notes (http://www.kubios.com/release-
notes).

In Kubios HRV Standard and Kubios HRV Premium ver. 3.1, the following new features and func-
tionalities were released (*indicates features available only in the Premium version):

• Pulse wave (PPG) data support added.*

• Comparison of Mean RR, Mean HR, RMSSD, and LF and HF powers (n.u.) to normal resting
values (Nunan et al. 2010, [37]).

• Stress index (SI) parameter based on Baevsky’s stress index added and novel parasympathetic
nervous system (PNS) and sympathetic nervous system (SNS) indexes proposed, providing easy
to interpret information about ANS status compared to normal resting values.

Kubios HRV (ver. 3.1)
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1.3. System requirements 7

• Energy expenditure estimation added.

• New Results Overview tab added to user interface.

• The Standard report sheet updated to include comparison to normal values and PNS/SNS indexes.

• The Time-varying report sheet updated to include informative illustrations of HRV parameter time
trends, PNS and SNS index time trends, and HR, Stress and RMSSD zones as well as energy
expenditure.*

The main new features of the first commercial release of Kubios HRV Standard and Kubios HRV
Premium ver. 3.0 (compared to ver. 2.2 published in [53]) were:

• Data support: 1) Polar IBI file support updated; 2) Custom ASCII file import support updated; 2*) ActiHeart
and ActiWave Cardio data support added; 3*) Zephyr BioHarness data support added; 4*) annotations support
for EDF+ files updated.

• Pre-processing: 1*) An automatic RR artefact correction method was added. The new method provides
enhanced artefact and ectopic beat detection performance and does not require a manual selection of optimal
threshold value.

• Time-domain HRV parameters: 1) Computation of minimum andmaximumHR as average of 5 beats (default
value, can be changed in preferences) was added; 2) NN50 and pNN50 parameters renamed as NNxx and
pNNxx (default threshold is 50 ms, can be changed in preferences).

• Frequency-domain HRV parameters: 1*) Lomb-Scargle periodogram was added as an alternative for
Welch’s periodogram (selection can be made in preferences); 2) VLF, LF and HF band powers are now
given also in natural logarithm scale; 3*) warning given if ECG derived respiration is outside the defined HF
band.

• Nonlinear HRV parameters: 1) Poincaré plot ratio SD2/SD1 was added.

• Time-varying analysis*: Time-varying analysis methods added to HRV Premium. These methods include
time trends for time-domain and frequency-domain parameters as well as for a limited number of nonlinear
analysis parameters. Changes in time-frequency information of HRV data are assessed by spectrogram and
a parametric Kalman smoother based time-varying spectrum estimate.

• Reports and results export: 1*) ”SPSS friendly” batch file export was added; 2) Time-varying analysis results
added to HRV report (additional page included); 3) Handling of report figures was updated (HRV Report and
*ECG print). All report pages open in the same window, where the user can view the report pages, print
selected pages or save pages to PDF file.

• GUI and usability: 1) Visual layout of the software was changed; 2) HR (instead of RR) data visualisation
can be selected in the GUI. In addition, several usability modifications to improve user experience.

1.3 System requirements
Kubios HRV (ver. 3.1) was developed using MATLABr 2016b1 (The MathWorks, Inc.) and was compiled
to a standalone application with the Matlab Compiler. As a result, the MATLAB Runtime R2016b (ver.
9.1) is required for running Kubios HRV. System requirements for running Kubios HRV are similar to
those requirements for Matlab (see https://www.mathworks.com/support/sysreq/). Only 64-bit operating
systems are supported.

Windows 7 SP1, 8, 8.1 or 10 (64 bit version) operating system with 4 GB of RAM, 3-5 GB of
disk space, screen resolution of 1024×768 or higher, and the MATLAB Runtime R2016b (ver. 9.1)
installation.

Mac OS X operating system with 4 GB of RAM, 3-5 GB of disk space, screen resolution of
1024×768 or higher, and the MATLAB Runtime R2016b (ver. 9.1) installation

Linux distribution (see qualified distribution at Mathworks site) with 4 GB of RAM, Intel or AMD x86-
64 processor, 4-6 GB of disk space, screen resolution of 1024×768 or higher, hardware accelerated
graphics card supporting OpenGL 3.3 with 1GB GPUmemory, graphical desktop environment, and
the MATLAB Runtime R2016b (ver. 9.1) installation.

1MATLABr. ©1984-2016 The Mathworks, Inc.

Kubios HRV (ver. 3.1)
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1.4 Installation
In order to run Kubios HRV, you need to install Kubios HRV Standard or Kubios HRV Premium and
MATLAB Runtime R2016b (ver. 9.1) on your computer. The first time you launch Kubios HRV, you will
be prompted to activate your license on the current computer. This can be done automatically over the
internet or manually if internet connection is not available. You will receive your personal license key
as well as the links for downloading the necessary installers after completing registration or purchase at
http://www.kubios.com/. A short description of the installation process at different operating systems is
given below.

Windows: Make sure that you have administrative privileges (you will need them to install Kubios
HRV). In order to install Kubios HRV on a Windows computer, you need to first install the MATLAB
Runtime R2016b (ver. 9.1) on your computer. After you have installed the MATLAB Runtime,
run the Kubios HRV installer file and follow the instructions given in the setup wizard to complete
installation. You can launch Kubios HRV by using the Desktop icon (if created) or by selecting it
from the Start Menu. Please note that Kubios HRV also starts the MATLAB Runtime and may take
some time especially with older computers. The first time you start Kubios HRV, you also need to
activate the software using your personal license key.

Mac OS: Download the the MATLAB Runtime and the Kubios HRV application bundle. First install
the MATLAB Runtime on your computer. After you have installed the MATLAB Runtime, move the
Kubios HRV application bundle into Applications on your computer. Kubios HRV is then ready to
be launched.

Linux: Install theMATLABRuntime R2016b (ver. 9.1) by extracting theMATLABRuntime zip pack-
age and executing the installer command ./install as root. Do not change the default MATLAB
Runtime install directory (/usr/local/MATLAB/MATLAB_Runtime/v91) if you do not have a special
need to change it. Kubios HRV assumes that MATLAB Runtime is installed in the default directory.
Otherwise the MATLAB Runtime directory has to be given as an argument to the run_kubioshrv
script. Kubios HRV can be installed using the deb (Ubuntu/Debian) or rpm (Fedora/SUSE/RedHat)
package using your package manager. Furthermore, Kubios HRV can also be installed without a
package manager by extracting the tar.gz file to a directory of your choosing. To run Kubios HRV,
select it from the menu of your desktop environment or run the command kubioshrv-standard or
kubioshrv-premium in the terminal. If you have installed Kubios HRV using the tar.gz package, go
to the directory you extracted the package and run ./run_kubioshrv in the terminal.

1.5 Uninstallation
Windows: The software can be uninstalled using the ”Windows Settings > System > Apps &
Features” (Windows 10) or ”Control Panel > Programs and Features” (Windows 8 and 7). However,
the uninstaller does not remove your preferences settings or license file. These have to be deleted
manually and can be found in the following folders:

Kubios HRV Standard
C:\Users\<username>\AppData\Roaming\Kubios\KubiosHRVStandard
C:\ProgramData\Kubios\KubiosHRVStandard
Kubios HRV Premium
C:\Users\<username>\AppData\Roaming\Kubios\KubiosHRVPremium
C:\ProgramData\Kubios\KubiosHRVPremium

Mac OS: Move the installed applications (MATLAB Runtime and Kubios HRV application) to trash.

Linux: Remove the MATLAB Runtimeby deleting the directory it was installed in (default
/usr/local/MATLAB/MATLAB_Runtime/v91). If you have installed Kubios HRV using a deb or rpm
package, use your package manager to uninstall the kubioshrv package. If you have installed
Kubios HRV using the tar.gz package, just delete the directory it was extracted in. However, the
preferences and license file have to be deleted manually from the ~/.kubios directory.

Kubios HRV (ver. 3.1)
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1.6. Software home page 9

1.6 Software home page
The Kubios HRV home page on the web can be found at

http://www.kubios.com/

where you can find current information on the software and download possible updates and related
material. If you have any trouble or questions regarding the software, please check first if your
particular problem or question has an answer in the FAQ/troubleshooting section at the software
homepage! You can also follow Kubios HRV on Facebook (www.facebook.com/kubios).

1.7 Structure of this guide
The aim of this guide is to help the user to get started with Kubios HRV. It should not, however, be thought
of as being an easy to follow step by step manual, but more like a reference material from which you
can probably find answers to your problems related to HRV analysis or usability of the software. The
structure of this guide is as follows.

After the overview chapter, from where you will find useful information about the system requirements
and installation, an introduction to heart rate variability is given in Chapter 2. This chapter starts with a
short discussion on the control systems of heart rate after which the extraction of heart beat intervals is
discussed and the derivation of HRV time series is described.

In Chapter 3, the description of the features and usage of the software is given. First, the input data
formats supported by the software are described and then the user interface through which the software
is operated is described. Then, different options for saving the analysis results are described and, finally,
instructions on how to set up the preference values for the analysis options are given. So if you want to
learn how to use all the functionalities of the software, this is the chapter to read.

In Chapter 4, two sample runs of the software are presented. The first sample run describes how
to analyse the lying and standing periods of the orthostatic test measurement (distributed along this
software) separately as stationary segments. The second sample run, on the other hand, describes the
time-varying analysis procedure of the same measurement.

Finally, Chapter 5 describes in detail the pre-processing and analysis methods included in the soft-
ware. This last chapter is useful for better understanding how the pre-processing steps (artifact correction
and baseline trend removal) function and how they effect HRV analysis results. The description of the
analysis methods included in the software is divided into time-domain, frequency-domain, nonlinear and
time-varying categories. For most of the methods, exact formulas for the different variables are given
and possible parameter selections are pointed out.

Kubios HRV (ver. 3.1)
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Chapter 2

Heart rate variability

Heart rate variability (HRV) describes the variations between consecutive inter-beat-intervals or IBIs.
Both sympathetic and parasympathetic branches of the ANS are involved in the regulation of heart rate
(HR). Sympathetic nervous system (SNS) activity increases HR and decreases HRV, whereas parasym-
pathetic nervous system (PNS) activity decreases HR and increases HRV [6]. The control of the auto-
nomic output involves several interconnected areas of central nervous system, which form the so-called
central autonomic network. In addition to this central control, arterial baroreceptor reflex as well as respi-
ration are known to induce quick changes in heart rate. The baro reflex is based on baroreceptors which
are located on the walls of some large vessels and can sense the stretching of vessel walls caused
by pressure increase. Both sympathetic and parasympathetic activity are influenced by baroreceptor
stimulation trough a specific baroreflex arc, Fig. 2.1.

Figure 2.1: The four baroreflex pathways (redrawn from [48]). Variation in venous volume (∆Vv), left
ventricular contractility (VC), sympathetic and parasympathetic (vagal) control of heart rate (HR), stroke
volume (Vs), cardiac output (CO), total peripheral resistance (TPR), and arterial blood pressure (BPa).

Typically, the most conspicuous oscillatory component of HRV is the respiratory sinus arrhythmia
(RSA), where the vagus nerve stimulation is being cut-off during inhalation, and thus, HR increases dur-
ing inhalation and decreases during exhalation. This high frequency (HF) component of HRV is thus
centered at respiratory frequency and is considered to range from 0.15 to 0.4 Hz. Another conspicuous
component of HRV is the low frequency (LF) component ranging from 0.04 to 0.15 Hz. The HF compo-
nent is mediated almost solely by the PNS activity, whereas the LF component is mediated by both SNS
and PNS activities and is also affected by baroreflex activity [55, 6, 24]. The origin of the LF oscillations
is however considered to be dominated by SNS and the normalized power of the LF component could
be used to assess sympathetic efferent activity [38, 16]. The fluctuations below 0.04 Hz, on the other
hand, have not been studied as much as the higher frequencies. These frequencies are commonly di-
vided into very low frequency (VLF, 0.003-0.04 Hz) and ultra low frequency (ULF, 0-0.003 Hz) bands,
but in case of short-term recordings the ULF band is generally omitted [55]. These lowest frequency

10



2.1. Heart beat period and QRS detection 11

rhythms are characteristic for HRV signals and have been related to, e.g., humoral factors such as the
thermoregulatory processes and renin-angiotensin system [6].

Heart rate variability (HRV) is a commonly used tool when trying to assess the functioning of cardiac
autonomic regulation. It has been used in multitude of studies, related to cardiovascular research and
different human wellbeing applications, as an indirect tool to evaluate the functioning and balance of the
autonomic nervous system (ANS) [55].

One of the main clinical scenarios where HRV has been found valuable include the risk stratification
of sudden cardiac death after acute myocardial infarction [55, 1, 24, 45]. In addition, decreased HRV
is generally accepted to provide an early warning sign of diabetic cardiovascular autonomic neuropathy
[55, 1], the most significant decrease in HRV being found within the first 5-10 years of diabetes [59, 52].
Besides these two main clinical scenarios, HRV has been studied with relation to several cardiovascular
diseases, renal failure, physical exercise, occupational and psychosocial stress, gender, age, drugs,
alcohol, smoking and sleep [58, 29, 55, 46, 2, 1].

The term HRV refers, in general, to changes in heart beat interval which is a reciprocal of the heart
rate. This is also the case here. The starting point for HRV analysis is the ECG recording from which
the HRV time series can be extracted. In the formulation of the HRV time series, a fundamental issue is
the determination of heart beat period.

2.1 Heart beat period and QRS detection

The aim in HRV analysis is to exam-
ine the sinus rhythm modulated by the
autonomic nervous system. Therefore,
one should technically detect the occur-
rence times of the SA-node action po-
tentials. This is, however, practically
impossible and, thus, the fiducial points
for the heart beat is usually determined
from the ECG recording. The near-
est observable activity in the ECG com-
pared to SA-node firing is the P-wave
resulting from atrial depolarization (see
Fig. 2.2) and, thus, the heart beat pe-
riod is generally defined as the time
difference between two successive P-
waves. The signal-to-noise ratio of the
P-wave is, however, clearly lower than
that of the strong QRS complex which
results primarily from ventricular depo-
larization. Therefore, the heart beat
period is commonly evaluated as the
time difference between the easily de-
tectable QRS complexes.
A typical QRS detector consists of a
preprocessing part followed by a deci-
sion rule. Several different QRS de-
tectors have been proposed within last
decades [56, 39, 40, 21, 15].

Figure 2.2: Electrophysiology of the heart (redrawn from
[30]). The different waveforms for each of the specialized
cells found in the heart are shown. The latency shown ap-
proximates that normally found in the healthy heart.

The accuracy of the R-wave occurrence time estimates is often required to be 1–2 ms and, thus, the
sampling frequency of the ECG should be at least 500–1000 Hz [55]. If the sampling frequency of the
ECG is less than 500 Hz, the errors in R-wave occurrence times can cause critical distortion to HRV
analysis results, especially to spectrum estimates [34]. The distortion of the spectrum is even bigger
if the overall variability in heart rate is small [43]. The estimation accuracy can however be improved
by interpolating the QRS complex e.g. by using a cubic spline interpolation [12] or some model based
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2.2. Pulse rate variablity and Pulse wave detection 12

approach [7]. The functioning and accuracy of the built-in QRS detector of Kubios HRV Premium
in described in Section 5.1

2.2 Pulse rate variablity and Pulse wave detection

Photoplethysmography (PPG) is a tech-
nique for monitoring blood volume
changes in the micro vascular bed of
tissue. Shortly after the QRS com-
plex appears in the ECG, the ventric-
ular systole generates a pulse wave
which leads to a rapid increase in blood
pressure and blood volume, this change
is seen by the steep rise in the pulse
wave (see Fig. 2.3). The subse-
quent decline corresponds to cardiac
diastole and may contain a secondary
peak, the so-called dicrotic notch, which
is attributed to the closure of the aor-
tic valve. Pulse to pulse interval (PP-
interval) is defined as a time interval be-
tween the rising part of the pulse waves. Figure 2.3: Normal PPG end ECG signal and definitions of

pulse transmit time (PTT) and pulse to pulse interval (PP)

Depending on the pulse wave velocity and the vascular path from the heart, there is a delay between
each QRS complex and the onset of its corresponding pulse wave. The delay is called pulse transit
time (PTT) and is negatively correlated with blood pressure, arterial stiffness, and age. Physiological
variability in PTT causes deviation between the PP-intervals and the RR-intervals. Since PP and RR
intervals are not equal, it is always better to use the term pulse rate variability (PRV) rather than HRV
when PPG measurement is used. Usability and accuracy of the PRV as an estimate of the HRV has
been widely studied. A good review on the topic can be found from[49], with the following concluding
remarks:

• PRV as an estimate of HRV has been proved to be sufficiently accurate only for healthy (and mostly
younger) subjects at rest.

• Moderate physical or mental stress tends to diminish agreement between PRV and HRV to an
extent that is or is not acceptable

• Physically more active states, such as walking or physical exercising, the agreement between PRV
and HRV often becomes insufficient, mostly due to motion artifacts.

The functioning and accuracy of the built-in pulse wave detectors of Kubios HRV Premium is
described in Section 5.1

2.3 Derivation of HRV time series
After the QRS complex occurrence times have been estimated, the HRV time series can be derived. The
inter-beat intervals or RR intervals are obtained as differences between successive R-wave occurrence
times. That is, the n’th RR interval is obtained as the difference between the R-wave occurrence times
RRn = tn − tn−1. In some context, normal-to-normal (NN) may also be used when referring to these
intervals indicating strictly intervals between successive QRS complexes resulting from SA-node depo-
larization [55]. In practice, the NN and RR intervals appear to be the same and, thus, the term RR is
preferred here.

The time series constructed from all available RR intervals is, clearly, not equidistantly sampled, but
has to be presented as a function of time, i.e. as values (tn,RRn). This fact has to be taken into account
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2.3. Derivation of HRV time series 13

before frequency-domain analysis. In general, three different approaches have been used to get around
this issue [55]. The simplest approach that have been adopted in, e.g., [5] is to assume equidistant
sampling and calculate the spectrum directly from the RR interval tachogram (RR intervals as a function
of beat number), see the left panel of Fig. 2.4. This assumption can, however, cause distortion into the
spectrum [32]. This distortion becomes substantial when the variability is large in comparison with the
mean level. Furthermore, the spectrum can not be considered to be a function of frequency but rather
of cycles per beat [13]. Another common approach, adopted in this software, is to use interpolation
methods for converting the non-equidistantly sampled RR interval time series (also called the interval
function) to equidistantly sampled [55], see the right panel of Fig. 2.4. One choice for the interpolation
method is the cubic spline interpolation [32]. After interpolation, regular spectrum estimation methods
can be applied. The third general approach is to apply methodology, which are designed for analysing
non-equidistantly sampled data. Such a method is for example the Lomb-Scargle periodogram, which
computes the periodogram spectrum estimate for non-equidistantly sampled data [14].

Derived RR intervals

RR interval tachogram

RR interval series (with two possible ways of interpolation)
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Figure 2.4: Derivation of two HRV signals from ECG: the interval tachogram (middle panel) and interpo-
lated RR interval series (bottom panel).
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Chapter 3

Software description

This chapter describes the different features and functionality of Kubios HRV, covering both the Standard
and Premium versions of the software. Features available only in the Premium version are indicated in
the text and an overview of differences between these versions is given in Table 1.1.

3.1 Input data formats
Kubios HRV supports the following data formats:

1. Polar HRM files (Polar Electro Ltd.) (*.hrm)
2. Suunto SDF, STE and XML files (Suunto Ltd.) (*.sdf,*.ste,*.xml)
3. Garmin FIT files (Garmin Ltd.) (*.fit)
4. RR interval text files (*.txt,*.dat,*.csv)
5. Custom text data files (only RR data) (*.txt,*.dat,*.csv)

Available only in Premium version:
6. ECG and PPG data text files (*.txt,*.dat,*.csv)
7. Custom text data files (RR, ECG and PPG data) (*.txt,*.dat,*.csv)
8. Biopac ACQ3 files (Biopac Systems Inc.) (*.acq)
9. Cardiology XML files (*.xml)
10. European data format (EDF and EDF+) files (*.edf)
12. General data format (GDF) files (*.gdf)
13. ISHNE Holter ECG data format files (*.ecg)
14. Zephyr BioHarness ECG and RR data files (*.csv)

15. Kubios HRV Matlab MAT files (*.mat)

Kubios HRV supports the following RR interval file formats. First of all, data of three commonly
used heart rate monitor manufacturers are supported. These are POLAR HRM and text files, SUUNTO
SDF/STE/XML, and GARMIN FIT files. When analysing data of these devices it should however be
noted that the RR intervals must be measured/stored in beat-to-beat! If only averaged data (e.g. HR
values at every 5 seconds) are stored, one can not perform HRV analyses. In addition to Polar, Suunto
and Garmin file formats, a support for plain RR interval text files (ASCII files) is provided. The input text
file can include RR interval values in one or two column format. That is, the RR interval values can be
given as

14



3.1. Input data formats 15

Type 1 Type 2

0.759 0.759 0.759
0.690 1.449 0.690
0.702 2.151 0.702
0.712 2.863 0.712
0.773 3.636 0.773

...
...

...

So in the second type of input, the first column includes the time indexes of R wave detections (zero
time for the first detection) and second column the RR interval values. The RR interval values above are
given in seconds, but millisecond values can also be given.

Similarly, ECG data can be given as input in text file formatted as shown below

Type 1 Type 2

-0.173 0 -0.173
-0.119 0.002 -0.119
-0.025 0.004 -0.025
0.091 0.006 0.091
0.218 0.008 0.218

...
...

...

where the first column on the second format type is the time scale in seconds for the ECG data. The
sampling rate of this example file is, thus, 500 Hz (samples per second). If ECG data is given according
to the first type, user is prompted to enter the sampling rate manually.

In addition to above text file formats, a custom text file option is also provided. Using this option you
can import text files including header lines and/or several data columns. Once you have selected an
input file, an interface for importing the file into Kubios HRV is opened. This interface and the options
that you need to set according to your data file are shown in Fig. 3.1.

Options to be set based on the data file:

• Number of header lines
• Column separator (tab/space, comma,
or semicolon)
• Data type (ECG, PPG or RR)
• Data column (the ordinal number of data
column)
• Data units (µV, V or mV for ECG / ms or
s for RR)
• Time index column (the ordinal number
of time indexes)
• Time units (units of time indexes in ms, s
or date/time format)
• ECG sampling rate in Hz (if no time index
column is defined for ECG)

Once you have specified the above values
for your file, press OK to proceed to open-
ing the file.

Figure 3.1: The interface for importing custom text data files into Kubios HRV.
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In addition to above text file formats, Kubios HRV supports the Zephyr BioHarness file format (CSV
file), Cardiology XML, and four binary data formats (Biopac ACQ3, EDF, GDF and ISHNEECG). The EDF
and GDF are open file formats quite generally used for storing biomedical signal data. The ISHNE ECG
is a standard output format for Holter ECG data described in [3]. When any of these binary files are read
to the software, Kubios HRV automatically tries to determine the ECG channel from the channel labels.
If the ECG channel cannot be determined (or more than one channels are identified as ECG channels),
the software prompts the user to select the appropriate channel. Due to internal design restrictions of
Kubios HRV, the channel labels should only contain alphabets, numbers, and underscores. If the channel
labels contain other characters, such as spaces or plus signs, etc., these characters are changed to
underscores. Furthermore, the channel label should start with an alphabet. If this is not the case, “Ch_”
is added to the beginning of the channel label.

NOTE: In addition to device manufactures mentioned so far, there are many other devices, which
store/export the ECG or RR data in one of the above described file formats, and are thus compatible
with Kubios HRV. A list of commonly used devices, which are known to be compatible with Kubios HRV
is given in Table 3.1.

Finally, the software supports also MATLAB MAT files saved by Kubios HRV. When you are using
Kubios HRV, you can save the analysis results into a MATLAB MAT file as described in Section 3.3.3.
These result files include all the analysis results and analysis parameters, exactly as they where when
you saved the results. In addition, these files include the raw data (ECG or RR data). Therefore, you
are able to return to already analysed data simply by opening the saved MAT file again in Kubios HRV.
The software will open with the settings that you have used when saving the results (e.g. including
the selected analysis samples). Thus, the MAT file makes it easy for you to change something in the
analysis (e.g. add a new analysis sample or change some settings)and re-analyse the data. Therefore, it
is always recommendable to save the analysis results also as MAT files, just in case if something needs
to be done differently. In addition, the MAT file are useful for anyone working with MATLAB.

Table 3.1: Commonly used ECG or HR measurement devices known to be compatible with Kubios HRV.

Devices Data type Kubios HRV input option
Actiheart (CamNtech Ltd.) IBI RR text file
Actiwave Cardio (CamNtech Ltd.) ECG EDF
Biopac system with ECG module (Biopac Systems Inc.) ECG Biopac ACQ3
eMotion Faros (Bittium) ECG/IBI EDF
Empatica E4 (Empatica Inc.) PPG Custom text file
emWave (HeartMath Inc.) IBI Custom text file
Firstbeat Bodyguard (Firstbeat Technologies Ltd.) IBI SDF file
Garmin HR monitors* (Garmin Ltd.) IBI Garmin FIT
CardioSoft and CASE systems (GE Healthcare) ECG Cardiology XML
Polar HR monitors* (Polar Electro Ltd.) IBI Polar HRM / RR text file
Shimmer ECG and PPG systems (Shimmer Sensing) ECG/PPG Custom text file
Suunto HR monitors* (Suunto Ltd.) IBI Suunto SDF/STE/XML
Zephyr BioHarness (Zephyr Tech. Corp.) ECG/IBI Zephyr BioHarness CSV
Cortium C3** (Cortrium Ltd.) ECG EDF
Kardia** (AliveCor Inc.) ECG EDF
* Make sure that the model supports beat-to-beat data export (IBI data).
** Requires converter available from device manufacturer
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3.2 The user interface
Kubios HRV analysis software is operated with a graphical user interface (GUI). Functionalities available
in the GUI depend on the version you are using (Standard or Premium), mainly because the Standard
version supports only RR interval (IBI) data. All the screen captures shown in this documentation are
taken from the Kubios HRV Premium. Features available only in Premium are mentioned in the text.

The user interface window of Kubios HRV is shown in Fig. 3.2. The user interface is divided into
three segments: 1) the RR interval series options segment on the top left corner, 2) the data browser
segment on the top right corner, and 3) the results view segment on the bottom. Each of these segments
are described in Sections 3.2.1, 3.2.2 and 3.2.3, respectively.

Figure 3.2: The graphical user interface of Kubios HRV analysis software.

3.2.1 RR interval series options
The RR interval series options shown in Fig. 3.3 include three functions: Artifact correction, Samples for
analysis and Remove trend components. The artifact correction options can be used to correct artifacts
from a corrupted RR interval series. The user can select between two methods: 1) Automatic correction
(availble only in Premium) and 2) Threshold correction. The automatic correction is a robust algorithm
for detecting artefacts (missed beat detections, misplaced beats etc.) and ectopic beats (e.g. premature
ventricular beats). The threshold correction simply compares every beat interval against a local mean
RR, and identifies the beat as artefact if it exceeds the specified threshold. The threshold should be
selected individually, because normal variability in RR intervals can be quite different between individ-
uals, and therefore, a fixed threshold could over-correct the RR data. For details on these correction
algorithms, see Sections 5.2.1.
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Figure 3.3: The RR interval series options segment of the user interface.

If your RR data includes artifacts and you select a correction method, Kubios HRV displays on the
RR data axis the corrections to be made on the RR intervals as shown in Fig. 3.4. In this case, the
RR interval data includes two clear artifacts: 1) a simulated ectopic beat at 10:13:40 (short interval
followed by longer interval) and 2) a simulated missed beat detection at 10:15:30. In order to remove
these artifacts the automatic correction was selected. From the RR data axis it can be seen that the two
artifacts (consisting of three erroneous beat intervals) would corrected by the method and none of the
normal RR intervals are affected (see the plot on the RR data axis and the summary of the right side of
the axis). To make the corrections press the Apply button. A piecewise cubic spline interpolation method
is used in the corrections. You can reverse the correction by pressing the Undo button or by selecting
none as the correction level.

The importance of artifact correction is highlighted in Figs. 3.4 B-C. As can be seen, having only
two artifacts within the 5-min segment that is analysed, has a significant effect on the time-domain HRV
parameters, especially to SDNN, RMSSD and TINN. Thus, even single artifacts should always be taken
care of prior to HRV analysis.

It should however be noted that artifact correction generates artificial values (when replacing the
identified artifacts with interpolated values) into the RR interval data. Thus the number of corrected
beats should not be too high (preferably <5%) not to cause significant distortion to analysis results. Also,
if ECG is measured, you should first try to correct the RR intervals by editing the R-wave detections
shown in the ECG data axis as described in Section 3.2.2.

In the Samples for analysis options, the time period(s) of the RR interval data to be analysed can
be modified by adding or removing samples and by changing the start time or length of the sample. If
more than one sample is selected, the analysis can be done either for the single samples separately or
by merging the samples into one longer sample before analysis. This selection is visible under the RR
series axis when multiple samples are selected. The starting point and length of the samples can also be
changed by moving/resizing the patch over the RR data axis as described in Section 3.2.2. This section
also describes how to add/remove samples to/from RR series axes.

Sometimes the RR interval time series includes a disturbing low frequency baseline trend component.
Detrending options can be used to remove this kind of trend components. Detrending options include
removal of the first, second, or third order linear trend or the trend can be removed using a method called
smoothness priors which was presented in [54]. In the smoothness priors method, the smoothness of the
removed trend can be adjusted by editing the Lambda value. The smoothness priors method is basically
a time-varying high pass filter and its cut-off frequency can be adjusted with the Lambda parameter (the
bigger the value of Lambda the smoother is the removed trend). The estimated cut-off frequency for the
given Lambda value is presented next to the Lambda value edit box. The trend to be removed from the
RR interval data is shown as a red line over the analysed RR data sample.

3.2.2 Data browser
The data browser segment shown in Fig. 3.5 displays the measured ECG signal and the extracted RR
interval series. It should be noted that if RR interval data is given as input, the ECG axis will not be
displayed and the RR series axis will be bigger in size. The ECG and RR interval data can be scrolled
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A) RR artifact correction in Kubios HRV

B) Without artifact correction C) Artifacts corrected

Figure 3.4: RR interval artifact correction. A) The artifact corrected series is visualized on top of the
raw RR interval series, summary of corrected beats within the recording is given on the right side of RR
data axis. Time-domain analysis results B) before artifact correction and C) after the artifacts have been
corrected.

with the two sliders. The position of the ECG axis is displayed as a grey patch in the RR axis. This patch
can also be moved with the left mouse button. The range of both axes can be changed by editing the
Range values and also the Y-limits of the axes can be manually changed by editing the edit boxes on
the left hand side of the axes. The ECG and RR interval axes can also be scrolled together by locking
the axes by pressing the “Lock” button on the bottom right corner.

In addition to the visualization of the ECG and RR data, the main function of this segment is to
enable RR artifact correction, which can be done in two ways. If only RR data is available, the artifact
corrections described in Section 3.2.1 are displayed in the RR axis. If the ECG is available, RR intervals
can be corrected by editing the misdetected R-wave as follows. Each detected R-wave is marked in
the ECG axis with a “+” mark. Each mark can be moved or removed by right clicking it with the mouse
(NOTE: By selecting Remove several, you can remove all detections after or before the current beat, or
to remove beat detections within given interval. These options are useful for removing beat detections
from noisy signal segments). In addition, new R-peak markers can be added by either right clicking
some other marker and selecting ”Add”, or by pressing the ( ) button on the right hand side of the ECG
axis. Moved or added R-peak markers are by default snapped to closest ECG maximum, but manual
positioning can also be achieved by pressing the ( ) button on the right hand side of the ECG axis. The
changes made in R-wave markers will be automatically updated to RR interval series.

The selected sample(s) (light blue patches over the RR data axis) can be modified with mouse as
follows. Each sample can be moved by grabbing it from the middle with the left mouse button and resized
by grabbing it from the left or right edge. You can also add a new sample to a specific location in the RR
data axis by right clicking on the RR axis. The new sample will start from the clicked time instant and
the length of the new sample is by default equal to the previous sample. After right clicking on the RR
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Figure 3.5: The data browser segment of the user interface.

axis, a small popup window opens in which the sample start time and length can be accepted/modified.
When more than one analysis sample has been generated, any sample can be removed by right clicking
it with the mouse.

In addition, the data browser segment includes buttons for displaying a printout of the ECG recording
( ) and moving the ECG axis view to the beginning of a selected sample (on the right hand side of the
ECG axis), scrolling the markers of the recording session (below the ECG axis), and changing the RR
data type (RR or HR) and display mode ( ) (on the right hand side of the RR axis). An example of
the ECG printout is shown in Fig. 3.6. When clicking on the button for displaying a printout of the ECG
recording, a popup window will appear in which you can select the range for the ECG to be printed (e.g.
the whole recording or the range of the analysed sample). In addition, you can adjust “print speed” in
mm/sec of the ECG in this popup window. Once you have defined the range for ECG printout and clicked
the OK button, the ECG signal is displayed in a preview window where it can be easily printed or saved
into a PDF file (see Section 3.3.2 for details on the preview window functionalities).

3.2.3 Results view
The results for the selected RR interval sample are displayed in the results view segment (see Fig.
3.2, which shows results for a maximal cardiopulmonary exercise test). The results are divided into
1) results overview, 2) time-domain results, 3) frequency-domain results, 4) nonlinear results, and 5)
time-varying (available only in Premium) results. The results of each section are displayed by pressing
the corresponding button on the top of the results view segment. The results are by default updated
automatically whenever analysis samples or analysis settings are changed. The processing time for
computing all the analysis results depends on the length and number of analysis samples that you have
generated. If the updating of the results takes too much time, you can disable the automatic update by
unchecking the ”Auto-refresh results” check box on top of the results view segment. When unchecked,
you can do all the changes to the analysis samples and settings at once, and then press the ”Refresh”
button when you want to update the results.

Results overview

The results overview section shown in Fig. 3.7 displays 1) a comparison between HRV parameters of
selected analysis segment and normal resting values and 2) an overview of recording. The normal values
for the HRV parameters (Mean RR, Mean HR, RMSSD, LF power n.u. and HF power n.u.) are taken
from the quantitative systematic review by Nunan et al. 2010 [37]. The Stress index is the square root (to
make the index normally distributed) of the Baevsky’s stress index proposed in [4] (see Section 5.3.1) and
values of Baevsky’s stress index between 50 and 150 are considered normal. The six HRV parameters
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Figure 3.6: The printout of the ECG signal generated by the software.

divided into those reflecting paramsympathetic nervous system (PNS) tone (Mean RR, RMSSD and HF
power n.u.) and those reflecting sympathetic nervous system (SNS) tone (Mean HR, Stress index and
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LF power n.u.) are illustrated on top of the normal values distributions. These graphs give a quick view
about the level of subject’s HRV with respect to normal values. NOTE that the normal values are from
rest measurements, thus exercise or stressful situations are expected to produce higher heart rate and
lower HRV. PNS and SNS indexes are computed to provide an overall measures of these nervous system
activities as compared to normal resting values (see Section 5.3.1 for details).

The overview of the recording includes an illustration of HR, RMSSD and Stress index time trends;
HR zones graph (time spent in each zone); stress zones (time spent in each stress zone); and energy
expenditure (basal metabolic rate and activity related energy expenditure). These information are also
provided in the time-varying report sheet (see Section 3.3.2), where also RMSSD zones are illustrated.
HR, Stress index and RMSSD zones are defined as follows:

HR zones Stress zones RMSSD zones
(of HRmax) (

√
SI) (Baevsky’s SI)

MAXIMUM: 90–100% VERY HIGH: ≥30 (≥900) VERY LOW: <5 ms
HARD: 80–90% HIGH: 22.4–30 (500–900) LOW: 5–12 ms
MODERATE: 70–80% ELEVATED: 12.2–22.4 (150–500) LOWERED: 12–27 ms
LIGHT: 60–70% NORMAL: 7.1–12.2 (50-150) NORMAL: 27–72 ms
VERY LIGHT: 50–60% LOW: <7.1 (<50) HIGH: ≥72 ms
INACTIVE: <50 %

In energy expenditure computation, the basal metabolic rate (BMR) is estimated using the Mifflin-St
Jeor equations, which have been found to be the most accurate

BMR (Men) = 10×Weight+ 6.25× Height− 5× Age+ 5 (3.1)
BMR (Women) = 10×Weight+ 6.25× Height− 5× Age− 161 (3.2)

The prediction of activity related energy expenditure (EE) is computed using the Keytel’s model without
a measure of fitness (VO2,max), which is given by [23]

EE (Men) = −55.0969 + 0.6309× HR+ 0.1988×Weight+ 0.2017× Age (3.3)
EE (Women) = −20.4022 + 0.4472× HR− 0.1263×Weight+ 0.074× Age (3.4)

In the above equations, heart rate is given in bpm, body weight in kg, height in cm, and age in years. In
Kubios HRV Premium, these settings can also be changed by clicking the Change Personal Data button
(to enable a quick way to update personal details for the current recording).

Figure 3.7: Results overview segment of Kubios HRV.

Time-domain results view

The time-domain results view shown in Fig. 3.8 A) displays the time-domain HRV parameters in a table
and the RR interval and HR histograms in the two axes. Most of the results are calculated from the
detrended RR interval data (if detrending is applied), but there are two obvious exceptions to this (i.e.
mean RR and mean HR), which are marked with the ∗ symbol. In the edit boxes below the histograms,
you can define fixed lower and upper limits for RR and HR values. These limits saved in software
preferences, so you only need to enter them once. These limits have effect on how the RR and HR
histograms are displayed, not only in the results view segment but also in the report figure described
in Section 3.3.2. If you leave the edit boxes empty, the histograms are auto-scaled according to the
minimum and maximum values in the data.
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A) Time-domain results view

B) Frequency-domain results view

C) Nonlinear results view

D) Time-varying results view

Figure 3.8: Results view segments of Kubios HRV: A) Time-domain results, B) Frequency-domain re-
sults, C) Nonlinear results and D) Time-varying results (available only in Premium).

Frequency-domain results view

The frequency-domain results view shown in Fig. 3.8 B) displays the results for both FFT and AR spec-
trum estimation methods. Both methods are applied to the detrended RR series. The spectra of the
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two methods are presented in the two axes (FFT spectrum on the left and AR spectrum on the right).
In Premium version, user can choose in software preferences (see. Section 3.4) to use Lomb-Scargle
periodogram instead of FFT based Welch’s periodogram. The frequency axes of the spectra are fixed to
range from 0 Hz to the upper limit of HF band plus 0.1 Hz. Thus, for the default frequency band settings
the frequency axis range is 0–0.5 Hz. The results for both spectra are displayed in the table on the
left. If ECG is measured, an estimate of the respiration frequency is also computed. This estimate, i.e.
electrocardiogram derived respiration (EDR) is shown as a vertical line in both spectrum estimates. The
EDR value is also shown below the spectrum Y-limit options.

The frequency-domain results view includes the following settings. The power axes limits, can be
adjusted with the options below the spectrum axes. The power axes can be selected to have either
common (same limits for FFT/Lomb and AR spectra) or separate upper Y-limits. If common Y-limit is
selected, it can also be enteredmanually into the edit box beside the selection button. The selected power
axis options apply also for the report sheet. Below the spectrum Y-limits options, there is a checkbox,
which can be used to show/hide the EDR. In addition, you can find settings for the very low frequency
(VLF), low frequency (LF), and high frequency (HF) bands limits. The default values for the bands are
VLF: 0–0.04 Hz, LF: 0.04–0.15 Hz, and HF: 0.15–0.4 Hz according to [55]. The default values for the
bands can be restored by pressing the Defaults button. Adjustments to the frequency bands here apply
only for the current session, if you want to change these settings permanently, you need to do it by editing
software preferences (see Section 3.4).

Nonlinear results view

The nonlinear results view shown in Fig. 3.8 C) displays all the calculated nonlinear variables in one
table. The Poincaré plot and the DFA results are also presented graphically in the two axes. In the
Poincaré plot (left hand axis), the successive RR intervals are plotted as blue circles and the SD1 and
SD2 variables obtained from the ellipse fitting technique are presented (for details see Section 5.3.4).
In the DFA plot (right hand axis), the detrended fluctuations F (n) are presented as a function of n in a
log-log scale and the slopes for the short term and long term fluctuations α1 and α2, respectively, are
indicated (for details see Section 5.3.4).

Time-varying results view

The time-varying results view shown in Fig. 3.8 D) displays the time-varying trend of the selected vari-
able. Time-varying analysis is by default applied to the whole duration of the measurement, but you can
also change Preferences to perform time-varying analysis for every analysis sample (see Section 3.4).
The variable is selected using the two dropdown buttons on the top left corner of the view. Selectable
variables are divided into time-domain, frequency-domain, and nonlinear categories. The trend of the
selected variable will appear immediately in the axis. Trend lines can be plotted with or without back-
groung grid and markers (checkboxes above the axis). When the time-varying spectrum is selected for
view, a color bar indicating the power values is also shown on the right. The color map of the spectrum
can be changed with the Color map dropdown button. The adjustable options for the time-varying anal-
ysis include the window width and grid interval for the moving window, which is used to calculate the
results. In addition, the time-varying spectrum can be estimated using either the spectrogram method
or the Kalman smoother method. The latter one is a parametric approach where the time-varying AR
parameters are solved with a Kalman smoother algorithm. The adaptation speed of the algorithm can
be adjusted manually by changing the Adaptation coeff. value. For bigger values of this coefficient the
algorithm adapts faster to local changes in the signal with the expense of increased variance. The default
value for the adaptation coefficient is 0.0001.

3.2.4 Menus and toolbar buttons
The user menus and toolbar buttons are located on the upper left hand corner of the user interface.
There are all together three user menus and eight toolbar buttons. The toolbar button icons and their
actions are given below
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Open new data file button is for opening a new data file for analysis.
If the results of the current analysis have not been saved, user is
prompted to do so.
Save results button is for saving the analysis results. The results can
be saved in ASCII, PDF, and MATLAB MAT file format (see Section
3.3 for details).
Append results to ”SPSS friendly” batch file (available only in
Premium) button is for adding the current analysis session results
into an existing (or creating a new) ”SPSS friendly” batch file (see
Section 3.3 for details).
Print results button is for printing the current results without opening
report sheet windows.
Report sheet button opens the report sheet preview window which
include all the analysis results (see Section 3.3.2 for details).
Edit preferences button opens a preferences window in which you
can, e.g., change the default values for analysis options (see Section
3.4 for details).
About Kubios HRV button opens the about dialog of the software,
which includes the version number and contact information. Also
the Kubios HRV End User License Agreement can be viewed in the
about dialog.

Zoom in/out buttons can be used to zoom in or out on the
ECG and RR data axes (please note that in other axes zoom-
ing is not enabled).

Close file button closes the current data file. If the results of the
current analysis have not been saved, user is prompted to do so.

All the above actions are also available on the user menus. The File menu includes Open, Save Re-
sults, Save Results As, Append Results to ”SPSS friendly” Batch File, Print Results, Edit Preferences,
Close, and Quit commands. The Open, Save Results, Append Results to ”SPSS friendly” Batch File,
Edit Preferences, and Close commands work exactly as the corresponding toolbar buttons. The differ-
ence between the Save and Save As commands is that when the results have already been saved, the
Save command automatically overwrites these results, whereas the Save As command asks the user
for a new file name. The Quit command of the File menu is for exiting from the software. The View
menu includes Markers menu and Report sheet command. The latter works as the corresponding tool-
bar button. The Markers menu, on the other hand, is for displaying possible stimuli or event markers
presented in the experimental procedure and stored in the data file. If no markers are found from the
data file the Markers menu will be disabled. Finally, the Help menu includes links to Kubios Home and
Kubios Support pages, link to contact us by e-mail, and the About Kubios HRV (opening the same about
dialog as the corresponding toolbar button)commands.

3.3 Saving the results
The analysis results can be saved by selecting Save Results or Save Results As from the File menu or
by pressing the save button on the toolbar. This will open a file save dialog in which the saving type can
be selected. There are three different types in which the results can be saved. That is, the results can
be written in an ASCII text file for further inspection, the report sheets generated from the results can be
saved in a PDF-file, and the results can be saved in a MATLAB MAT-file (available only in Premium). In
addition to these, Kubios HRV Premiumincludes the Append to ”SPSS friendly” batch file option to save
session results into existing batch file (ideal for saving group results).

3.3.1 ASCII text file
When the ASCII text file is selected for the saving type, the numeric results of the analysis will be written
in an ASCII text file. The resulting text file includes the following information in the enumerated order.
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1. Software, user, and data file informations
2. Used analysis parameters
3. Samples selected for analysis
4. Results overview
5. Time-domain results
6. Frequency-domain results
7. Nonlinear results
8. Time-varying results
9. RR interval data and spectrum estimates

The columns of the file are separated with comma or semicolon (can be adjusted in software preferences)
so that the results could easily be imported to, e.g., spreadsheet programs such as the Microsoft Excelr
for further inspection.

3.3.2 Report sheet
The report sheets include all the analysis results for the current session. The report sheets open in a
preview window where they can be easily printed or saved into a PDF file. Kubios HRV produces one
report page for every analysis sample including all the time-domain, frequency-domain, and nonlinear
analysis results (see Figs. A.2 and A.3). In addition, Kubios HRVPremium produces one page (or several
pages if time-varying analysis has been set to apply into analysis samples in Preferences) including time-
varying analysis results (see Fig. A.6). The RR interval data and the sample selected for analysis are
presented on top of all report pages and the analysis results below them.

When Save Results have been selected, the report sheet(s) can be saved in a single PDF-file by
selecting Report figure as the saving type in the save dialog. In this case, the report sheet(s) will not be
displayed, but just saved in the selected PDF-file. If you wish to view the report sheet(s), choose Report
sheet from the View menu or just press the corresponding toolbar button. This will open the report sheet
windows for view.

The report sheet window includes 11 toolbar buttons and File and Page menus on the upper left hand
corners of the windows. The toolbar button icons and their actions are given below

Print button opens a print dialog from which the report sheet(s) can
be sent to the selected printer.
Save all pages as PDF-file button is for saving all report sheets into
a single PDF-file.
Zoom in button if for zooming in (magnifying) the report sheet.

Zoom out button is for zooming out the report sheet.

Reset to original size button can be used to restore the original
zoom level. This also resets the size of the corresponding report
sheet window to its original size.

Move visible area button is for moving the visible area of the zoomed
report sheet in the report window (just grab the sheet with mouse and
drag it to the desired direction).
Close button is for closing the report sheet.

Go to first page button is for displaying the first report sheet page in
the preview.
Go to previous page button is for displaying the previous report
sheet page in the preview.
Go to next page button is for displaying the next report sheet page
in the preview.
Go to last page button is for displaying the last report sheet page in
the preview.
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The File menu includes Save All Pages as PDF, Print and Close commands, which are also given
as toolbar buttons described above. Print command opens a print dialog, from which you can choose
to print all pages, pages in certain range or the current page. The Page menu includes commands for
changing the page that is displayed in the preview window (First page, Previous page, Next page, Last
page), which are all also given as toolbar buttons.

3.3.3 Matlab MAT-file (available in Premium)
In addition to saving the numeric results into an ASCII text file or saving the report sheet(s) in a PDF-file,
the analysis results can also be saved in a MATLAB MAT-file (compatible with MATLABr R2006b or
later). The MAT-file include all the analysis results and analysis parameters, exactly as they where when
you saved the results. In addition, these files include the raw data (ECG or RR data). This saving option
has two purposes:

1. Themain purpose of theMAT-file is that by opening theMAT-file in Kubios HRV, you can return to the
previously performed analyses session as it was (all settings and analysis samples are presented
as they were) when the analysis was originally performed. Thus, the MAT file makes it easy for you
to change something in the analysis (e.g. add a new analysis sample or change some settings) and
re-analyse the data. Thus, we recommend that you save the analysis results always as a MAT-file,
just in case if something needs to be done differently.

2. In addition, theMAT files are useful for anyone working with MATLAB (further analysis or processing
can be performed easily by loading the MAT-files into MATLAB).

The MAT files include a single structured array variable named Res. The Res variable includes the
numeric results as well as the RR interval data and all the analysis options. The Res structure includes
four fields which are shortly described as follows

f_name: File name of the analysed data file
f_path: Full path for the analysed data file

CNT: Basic information of the data file (the field name refers to Neuroscan CNT-file
for historical reasons)

HRV: Used analysis options, RR interval data, and all analysis results.

The HRV field is the most essential one of these fields. The HRV field includes six fields the contents
of which are shortly described as follows

Param: The analysis options used in the calculation of the results
Data: The RR interval data

Summary: Results overview including PNS and SNS indexes
Statistics: Time-domain analysis results
Frequency: Frequency-domain analysis results
NonLinear: Nonlinear analysis results

TimeVar: Time-varying analysis results

The variable names of the different fields are more or less self-descriptive and are not documented
here.

3.3.4 ”SPSS friendly” batch file (available in Premium)
In Kubios HRV Premium, you can also save the analysis results into a ”SPSS friendly” batch file. This
saving options is ideal for saving group results, for example if you need to analyse HRV data of several
subjects and want to be able to have the group results easily available for statistical testing e.g. in MS
Excel or SPSS. Alternatively, you can use the batch file saving option for saving HRV results of repeated
personal recordings, e.g. to monitor training effect or daily stress levels. Kubios uses Comma Separated
Values (CSV) file format for the batch file, which can be easily imported into many spreadsheet and
statistical software packages (MS Excel, SPSS).

The Append to ”SPSS friendly” batch file functions as follows:
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1. When saving the analysis results of the first subject (i.e. when you want to initialise a new CSV
file), select the destination and file name for the new CSV file from the file dialog. In this case,
Kubios HRV will initialise the CSV file by writing the column labels and add the analysis results into
the first row below the column labels.

2. When saving the analysis results of other subjects, simply select the previously saved CSV file. In
this case, Kubios HRV will add the results of the current analysis session into the last row of the
file.

The structure of the ”SPSS friendly” batch file is presented in Fig. 3.9. Every row of the batch file
consists of the file name string and used analysis parameters values ([1x18] array); followed by the
following information for every analysis sample: sample info consisting of sample onset/offset time and
artifact correction statistics ([1x2] array), and HRV analysis results ([1x82] array). For more details on
the different HRV analysis variables please see Table A.1.
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A)
Sample 1 (S1) Sample N (SN )

Files analysed Parameters Info HRV results … Info HRV results
FileName PRM#[PARAMETERS] S1_[INFO] S1_[VARIABLES] ... S1_[INFO] S1_[VARIABLES]
subject_1.txt [1x18] array [1x2] [1x82] … [1x2] [1x79]
subject_2.txt [1x18] array [1x2] [1x82] … [1x2] [1x79]
...

...
...

...
...

...
subject_M.txt [1x18] array [1x2] [1x82] … [1x2] [1x79]

B)
Parameters
#Detrending: Detrending method used #WelchWindow: Window width (overlap) in Welch
#InterpRate: Interpolation rate of RR data #LombWindow: Smoothing window width in Lomb periodogram
#MinMaxHR: Nbr of beats averaged for Min/Max HR #ARspectrum: Order of AR spectrum (factorisation)
#NNxxThreshold: Threshold for NNxx and pNNxx in msec #Entropy: Embedding dimension (tolerance)
#VLFband: VLF frequency band limits in Hz #DFAshortterm: DFA, short-term fluctuations range
#LFband: LF frequency band limits in Hz #DFAlongterm: DFA, long-term fluctuations range
#HFband: HF frequency band limits in Hz #RecurrencePlot: RPA, embedding dimension (threshold)
#FreqPoints: Nbr of points in spectra (points/Hz) #NbrSamples: Number of analysed samples
#FFTorLomb: FFT (Welch) or Lomb periodogram used #ArtifactCorrection: RR artifact correction method

Sample Info
Onset-Offset: Sample onset-offset times (hh:mm:ss) Artifacts (%): Corrected artifacts within the sample

HRV variables
PNS index: Parasympathetic nervous system tone index VLFpeak_AR (Hz): VLF band peak frequency (AR spectrum)
SNS index: Sympathetic nervous system tone index LFpeak_AR (Hz): LF band peak frequency (AR spectrum)
Stress index: Square root of Baevsky’s stress index HFpeak_AR (Hz): HF band peak frequency (AR spectrum)
Mean RR (ms): Mean of RR intervals VLFpow_AR (ms2): Absolute VLF power (AR spectrum)
SDNN (ms): Standard deviation of RR intervals LFpow_AR (ms2): Absolute LF power (AR spectrum)
Mean HR (bpm): Mean heart rate HFpow_AR (ms2): Absolute HF power (AR spectrum)
SD HR (bpm): Standard deviation of heart rate VLFpow_AR (log): Log VLF power (AR spectrum)
Min HR (bpm): Minimum HR using N beat MA LFpow_AR (log): Log LF power (AR spectrum)
Max HR (bpm): Maximum HR using N beat MA HFpow_AR (log): Log HF power (AR spectrum)
RMSSD (ms): RMS of successive RR interval differences VLFpow_AR (%): Relative VLF power (AR spectrum)
NNxx (beats): Nbr or successive RRs > xx ms LFpow_AR (%): Relative LF power (AR spectrum)
pNNxx (%): Percentage of successive RRs > xx ms HFpow_AR (%): Relative VLF power (AR spectrum)
HRV triangular index: RR histogram area/height LFpow_AR (n.u.): Normalised LF power (AR spectrum)
TINN (ms): RR histogram baseline width HFpow_AR (n.u.): Normalised HF power (AR spectrum)
SDANN (ms): SD of 5-min RR interval segment means TOTpow_AR (ms2): Total spectral power (AR spectrum)
SDNNI (ms): Mean of 5-min RR interval segment SDs LF_HF_ratio_AR: LF/HF power ratio (AR spectrum)
VLFpeak_FFT∗ (Hz): VLF band peak frequency (FFT) EDR (Hz): ECG derived respiration
LFpeak_FFT (Hz): LF band peak frequency (FFT) SD1 (ms): Poincaré plot short term variability
HFpeak_FFT (Hz): HF band peak frequency (FFT) SD2 (ms): Poincaré plot long term variability
VLFpow_FFT (ms2): Absolute VLF power (FFT) SD2_SD1_ratio: SD2/SD1 ratio
LFpow_FFT (ms2): Absolute LF power (FFT) ApEn: Approximate entropy
HFpow_FFT (ms2): Absolute HF power (FFT) SampEn: Sample entropy
VLFpow_FFT (log): Log VLF power (FFT) D2: Correlation dimension
LFpow_FFT (log): Log LF power (FFT) DFA1: DFA, short term fluctuations slope
HFpow_FFT (log): Log HF power (FFT) DFA2: DFA, long term fluctuations slope
VLFpow_FFT (%): Relative VLF power (FFT) RP_Lmean (beats): RPA, mean line length
LFpow_FFT (%): Relative LF power (FFT) RP_Lmax (beats): RPA, maximum line length
HFpow_FFT (%): Relative HF power (FFT) RP_REC (%): RPA, recurrence rate
LFpow_FFT (n.u.): Normalised LF power (FFT) RP_DET (%): RPA, determinism
HFpow_FFT (n.u.): Normalised HF power (FFT) RP_ShanEn: RPA, Shannon entropy
TOTpow_FFT (ms2): Total spectral power (FFT) MSE_1 …MSE_20: Multiscale entropy for scales τ = 1, . . . , 20
LF_HF_ratio_FFT: LF/HF power ratio (FFT)

∗ If Lomb-Scargle periodogram is used instead of Welch’s pe-
riodogram, FFT → Lomb

Figure 3.9: Structure of the ”SPSS friendly” batch file: A) overview of the file structure and B) short
description of the fields.
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3.4 Setting up the preferences
Kubios HRV includes several settings related to how the ECG or RR interval data is processed and
analysed. The default values for these settings are designed to be more or less suitable for short-term
(normal human) HRV recordings, but may sometimes need to be redefined. Some of these settings can
be adjusted in the user interface to apply for the current analysis session, but in order to make permanent
changes into these settings you need to edit them at software preferences. Preferences can be edited
by selecting Edit Preferences from the File menu or by pressing the corresponding toolbar button. This
will open the preferences window in which the preference values can be redefined. The preferences
are divided into four categories: 1) User information, 2) Input data & pre-processing, 3) Analysis options
(divided into time/frequency-domain, nonlinear and time-varying analysis preferences), and 4) Report
settings.

In the User information settings shown in Fig. 3.10 you can set up your personal contact information
(Name, Department, and Organization). This information will only be included in the bottom left corner of
the report sheet and in the beginning of the ASCII text file including the analysis results. That is, the user
information is meant just for indicating the person/organisation that has carried out the analysis. The
values given for Gender, Date of birth, Height, Weight and Max HR are used in HR zones and energy
expenditure computations.

Figure 3.10: Set up preferences window of the software – User information settings.

From the Input data & pre-processing settings shown in Fig. 3.11, you can change the default input
data type into any of the file formats mentioned in Section 3.1. The selected input data type is used as the
default data type every time a new data file is opened, so you can save one additional click by defining
the data type you usually work on as the default. Under Signal type you can specify if you are using ECG
or PPG data for HRV analysis (this has effect on the algorithm applied in heart beat detection). If you are
using RR or IBI data, this selection does not have any effect. When ECG is selected as signal type, you
can modify QRS detection settings. You can force Kubios to look for the R-waves either from positive
of negative amplitudes, or let Kubios to decide (R-wave polarity=Automatic). Also, you can manually
fix the prior guess for the average RR interval (used by the QRS detector as initial value), or let Kubios
try to estimate it automatically. By default the QRS detection settings are set to automatic and there is
no reason to change them unless you are experiencing problems in R-wave detection. Problems may
arise if you are trying to analyse something else than normal human ECG data. For example, in small
animal studies, the prior guess for the RR interval might need to be fixed manually (because the mean
RR interval is considerably shorter compared to normal human recordings). If PPG is selected as signal
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type, you can modify the pulse acceptance threshold (not visible in Fig. 3.11 because ECG selected as
signal type), which adjusts the sensitivity of the pulse detector algorithm.

In addition, the interpolation rate (used for forming an equidistantly sampled time series from the non-
equidistantly sampled RR interval data, which is required for FFT and AR based spectrum estimation) and
the detrendingmethod can be set here. As the interpolationmethod a piecewise cubic spline interpolation
is used and the default rate is 4 Hz. For short-term HRV analysis, we recommend the smoothness priors
detrending method (with a smoothing parameter, which gives a cutoff frequency below the LF band),
which is described in Section 5.2 and in reference [54].

Figure 3.11: Set up preferences window of the software – Input data & pre-processing settings.

The Analysis options settings include some general analysis options, and detailed settings of dif-
ferent analysis methods under three sections: 1) Time/frequency-domain, 2) Nonlinear and 3) Time-
varying. The general analysis settings shown in Fig. 3.12 includes selection of analysis to be performed:
1) Standard analysis (all time-domain, frequency-domain and nonlinear analysis for selected stationary
samples), and 2) Time-varying analysis. Only selected analysis will be performed and thus un-checking
the unnecessary analysis type will speed up the computations. Using the settings for RR interval sam-
ples, you can define how many analysis samples are generated by default and what is the length of
these samples. In case of several samples, you can choose the analysis type between Single samples
(in this case, Kubios will perform analysis for every sample separately) and Merge samples (the samples
are merged into one longer sample for which analysis is then performed). Finally, the Update mode can
be changed between Automatic (analysis results are refreshed automatically) and Manual (you need to
refresh results manually).

The time and frequency-domain analysis settings are shown in Fig. 3.13. For time-domain analysis
methods, you can adjust the window width of the moving average filter (default 5 beats), which is used to
extract minimum and maximum HR values. Also, you can adjust the threshold used in the computation
of NNxx and pNNxx parameters (default 50 ms → NN50 and pNN50). Under HRV frequency bands,
the very low frequency (VLF), low frequency (LF), and high frequency (HF) bands of HRV frequency-
domain analysis can be adjusted. The default values for these frequency bands are VLF: 0–0.04 Hz,
LF: 0.04–0.15 Hz, and HF: 0.15–0.4 Hz according to [55]. The rest of the settings relate to spectrum
estimation methods. The points in frequency-domain is given as points/Hz and corresponds by default
to the window width of the FFT spectrum. If spectrum interpolation is desired the points in frequency-
domain can be increased. The spectrum for the selected RR interval sample is calculated both with
Welch’s periodogram method (FFT spectrum) and with an autoregressive modeling based method (AR
spectrum). In the Welch’s periodogram method, the used window width and window overlap can be
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Figure 3.12: Set up preferences window of the software – Analysis options settings.

adjusted by editing the corresponding value. The default value for window width is 300 seconds and
the default overlap is 50 % (corresponding to 150 seconds), which produce three overlapping windows
for a 10-min (600 sec) analysis sample. As an alternative to FFT spectrum, you can select to use the
Lomb-Scargle periodogram, which does not assume equidistant sampling and has been recommended
for HRV spectral analysis in some studies. The default smoothing window for this spectrum estimate is
0.02 Hz. For the AR spectrum, there are two options that can be selected. First, the order of the used
AR model can be selected. The default value for the model order is 16. The second option is whether
or not to use spectral factorization in the AR spectrum estimation. In the factorization the AR spectrum
is divided into separate components and the power estimates of each component are used for the band
powers. Spectral factorisation has been shown to provide some advantage especially when e.g. the
HF component is partially overlapping with the LF band [50], but AR spectrum without factorisation is
probably more robust estimate of spectrum.

The nonlinear analysis settings are shown in Fig. 3.14. As the first option, you can choose if the non-
linear parameters are also computed from the detrended RR interval data or not (by default computations
are made from detrended data). If you uncheck this option, then all nonlinear parameters are always
computed from non-detrended RR interval data. The embedding dimension m (default 2 beats) and the
tolerance value r (default 0.2 times SD) used in for the computation of Approximate entropy (ApEn) and
Sample entropy (SampEn) can be modified. Note that the tolerance value is adjusted in relation to the
standard deviation of the RR interval data. Next, limits of the short-term (N1) and long-term fluctuations
used in the Detrended fluctuation analysis (DFA) can be modified (defaults 4-12 and 13-64 beats, re-
spectively). Finally, the embedding dimension (default 10 beats) used both in the computation of the
Correlation dimension (D2) and in the Recurrence plot analysis (RPA), and the threshold level (default√
10) used in RPA, can be modified. For more information on the meaning of these different options see

Section 5.3.4.
The time-varying analysis settings are shown in Fig. 3.15. You can choose to apply time-varying

analysis (analysis mode) on the whole measurement (default) or for analysis samples. You can adjust
the width (default 60 sec) and grid interval (default 10 sec) of the moving window used for time-varying
analysis. The grid interval is the time interval by which the window is moved at every step, and analysis
results are available at these intervals. For example, you you want to performe time-varying analysis
at 10-min non-overlapping segments for the whole duration of recording, you need to select the whole
recording as an analysis sample and then define the window width and grid interval both to 600 seconds.
For the time-varying spectrum estimation there are two options: 1) the well known spectrogrm (default)
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Figure 3.13: Set up preferences window of the software – Analysis options: time-/frequency-domain
methods.

Figure 3.14: Set up preferences window of the software – Analysis options: nonlinear methods.

and 2) a Kalman smoother spectrum estimate proposed in [50].
The Report settings shown in Fig. 3.16 include the following options. The contents of the results to

be exported can be selected by checking the Standard and/or Time-varying results options. If either one
of these is unchecked, only the selected results will be exported (in PDF reports or the other export file
formats). Concerning the ASCII text file as well as the ”SPSS friendly” CSV batch file, the field delimiter
and decimal point used when saving the results can be selected (the default values being comma ”,”
for field delimiter and dot ”.” for decimal separator). The paper size of the report sheet can be changed
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Figure 3.15: Set up preferences window of the software – Analysis options: time-varying methods.

between A4 (210×297 mm) and Letter (8.5×11 inch) size. The default paper size is A4. Only one
spectrum figure is shown in the report sheet, but you can here choose if you want to show the FFT/Lomb
or the AR spectrum estimate. The report sheet settings include also three options regarding how the
time-varying analysis results are presented: 1) select two time-domain parameters to be displayed in
report sheet (STD RR, STD HR, RMSSD, NNxx, pNNxx, HRV triangular index, TINN), 2) select two
frequency-domain parameters to be displayed in the report sheet (VLF, LF and HF peaks frequencies,
band powers in different units and LF/HF ratio can be selected), and 3) select two nonlinear parameters
to be displayed in report sheet (SD1, SD2, SD2/SD1, ApEn, SampEn, DFA α1, DFA α2).

Figure 3.16: Set up preferences window of the software: Report settings category.
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All modifications for the preferences are saved by pressing the OK button. Note that the OK button
saves the preferences, but they will be applied only in the next session. A session is considered to be
ended when the program is restarted or Close file is selected. If, on the other hand, a new file is opened
(without first closing the previous file) preferences will not be applied, but the local settings (changes
made in the user interface) are applied for the new file as well.

In addition to the actual analysis options, there are various other editable options which have mainly
influence on the usability of the software. Such options are e.g. the Range and Y-limit values of the data
axis and various visualization options. The values of these options are preserved in memory and any
changes made to them will be applied in the future sessions. Also the preference directory paths from
where the data file is searched for and in which the results are saved are preserved in memory. The last
nine opened data files will also appear in the File menu of the user interface and can be reopened from
there.

All the preferences and preserved options used by Kubios HRV are saved in user specific folders1.

Windows 7,8 or 10:

HRV Standard: C:\Users\<username>\AppData\Roaming\Kubios\KubiosHRVStandard

HRV Premium: C:\Users\<username>\AppData\Roaming\Kubios\KubiosHRVPremium

Mac OSX:

HRV Standard: ~/Library/Preferences/Kubios/KubiosHRVStandard

HRV Premium: ~/Library/Preferences/Kubios/KubiosHRVPremium

Linux:

HRV Standard: ~/.kubios/KubiosHRVStandard

HRV Premium: ~/.kubios/KubiosHRVPremium

where <username> is the name of your user profile. The folder will include a file named
KubiosHRVprefs.mat, which includes all the preferences for the analysis options, user information and
user interface usability. The file is created when Kubios HRV is started for the first time and it will be
updated whenever the preference values are edited/updated. The original settings of the preferences
can be restored by deleting this preference file. Also, if the preference file gets somehow corrupted, the
preference file will be rewritten using the default values.

1Note that the AppData folder in Windows is hidden by default and are not visible in the File Explorer if the “Show hidden files
and folders” is not selected from the “Folder Options” section of the File Explorer.
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Chapter 4

Sample run

In this chapter, we present a sample runs with the software. The first sample run is made for the GDF
data file (gdf_ecg_data.gdf) distributed with this software. The sample data is measured from a healthy
young male during an orthostatic test. The change in the posture is known to be reflected in the low
frequency and high frequency HRV in an opposite way. That is, when subject stands up after lying for
few minutes a strong decrease in the HF power and a more gradual increase in LF power are observed.
In addition, a strong increase in heart rate is observed immediately after standing up, which aims to
compensate the sudden decrease in blood pressure. In the Sample run 1 (Section 4.1), this data file is
analysed by considering the lying and standing periods separately. In the second sample run (Sample
run 2, Section 4.2), a time-varying analysis for a maximal cardiopulmonary exercise test performed by a
young healthy male subject is illustrated.

4.1 Sample run 1 - Stationary analysis
In this sample run, we show how to make the time-domain, frequency-domain, and nonlinear analysis,
for the lying and standing periods of the orthostatic measurement separately. This task can be easily
accomplished in a single session. First, start the software and open the data file into the user interface.
At this point, you can edit any of the analysis options to fit your demands. If you need to analyse several
data files with the same options, you should modify analysis options at the software preferences. For
example, if you are using the Premium version, you can choose to perform only stationary analysis on
the selected samples, and thus you might want to turn off the time-varying analysis from the software
preferences.

When you open a data file in Kubios, you will by default have one pre-defined analysis sample (illus-
trated with the light-blue patch over the RR time series axis). In this case, we modify this sample to be
300 seconds long (5-min) and place it over the supine period. Next, we add a second analysis sample
for analysing the standing period. This can done by right clicking the RR axis at the point were you
want the second sample to start, then pressing Yes to the Add sample popup window, and OK to verify
the sample properties. If necessary you can move the two samples or change their length by grabbing
them with the left mouse button from the center or edge of the sample. Alternatively, the ranges of the
samples can be changed by editing the Start and Length values in RR interval series options segment
(see Section 3.2.2). The sample selections that we made for this sample run are illustrated in Fig. A.1.
Note that the Sample analysis type option under the RR axis is set for Single samples. Then, analysis
results are calculated for both samples separately. If, on the other hand, Merge samples is selected,
then the two samples are first merged into one sample and the analysis results are calculated for this
merged sample.

Since we are now only interested in the changes in LF and HF bands, we wish to remove the low-
est frequency trend components from the RR series. These trend components affect on the time and
frequency-domain variables and, thus, by removing the trend from the data enables these variables to
better describe the LF and HF variability which we are interested of. We select to remove the trend with
the smoothness priors based method. Once the detrending method is selected red lines appear over
the RR interval data indicating the removed trend components. The smoothness of the removed trend in
the smoothness priors method can be adjusted by changing the Lambda value. The smoothness priors
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detrending method can be compared to a high-pass filter in which the cutoff frequency is determined by
the lambda value (bigger lambda corresponds to lower cutoff). The estimated cutoff frequency of the
detreding method is also shown next to the Lambda value. Since we are now interested in LF and HF
frequencies, we wish to make sure that the detrending does not remove those frequencies. This can be
easily done by changing the Lambda value in such a way that the cutoff frequency is below 0.04 Hz. The
effect of detrending can also be verified by inspecting how it changes the FFT spectrum. Here, we set
the Lambda value to 500.

The time-domain, frequency-domain, and nonlinear analysis results for the selected samples can
then be viewed in the results view segment. Just make sure that the results have been updated (check
that the Auto-refresh is checked on top of the results view segment). Press the Time-domain, Frequency-
domain, or Nonlinear buttons to view the corresponding results. Note that the results are shown only
for one of the samples at a time. To take a look at the results of the other sample press the ≪ or ≫
button on the top right corner of the results view segment (the text on the left changes to indicate which
sample’s results are shown, this sample will also be highlighted in the RR series axis). Note that you
can force a common Y-limit for the spectra of both samples by setting a common Y-limit value manually
in the frequency-domain results view.

The analysis results are now ready to be saved, and we will save the results in all possible formats
here. To do this we select Save Results from the File menu or just by pressing the save button on the
toolbar. Then select Save all (*.txt,*.mat,*.pdf) (note that the *.mat option is available only in
Premium version) as the save type and enter a file name. You do not need to give any extension to the
file name. The numeric results of the analysis will be saved in the *.txt text file, in the *.mat MATLAB
file and the report sheets in the *.pdf file. The generated PDF-file will now include two pages, one for
the results of the first RR interval sample (the lying period) and one for the second sample (standing
period). These report sheet pages are shown in Figs. A.2 and A.3. Note: if you are using the Premium
version and time-varying analysis is not turned off, you will have altogether four report sheet pages (two
extra pages for the time-varying analysis results for the two samples).

In the text file, the results for the two samples are presented side by side as can be seen from Fig.
A.4. The structure of the text file is described shortly in Section 3.3.1, but the content is or less self
descriptive. The saved MATLAB MAT-file includes all the analysis results as well as measurement data
and analysis options as described in Section 3.3.3. It is recommended to always save the analysis results
in the MAT-file (even if you don’t have MATLAB), because the MAT-file can be later re-opened in Kubios.
When opening a Kubios HRV exported MAT-file, the analysis session saved in the file will be opened as
it was when the MAT-file was saved and you can easily check or re-analyse the data.

Finally, the analysis results can also be saved into a ”SPSS friendly” batch file as described in Section
3.3.4. This format is useful if you are analysing HRV recordings of several subjects, or alternatively,
repeated personal recordings for monitoring e.g. daily changes. Kubios uses Comma Separated Values
(CSV) file format for the batch file, which can be easily imported into many spreadsheet and statistical
software packages (MS Excel, SPSS).

4.2 Sample run 2 - Time-varying analysis
In the second sample run, we show how to make time-varying analysis in Kubios HRV Premium. The
time-varying analysis needs to be enabled in the preferences. To do this select Edit preferences from
the File menu and check the Time-varying analysis from Analysis options category of the preferences
window. If you do not want to view any of the time-domain, frequency-domain, or nonlinear analysis
results (for the selected analysis samples) and nor do you wish to include any of them in the report
sheets or results file, you should at the same time uncheck the standard analysis from the preferences.
Then press the OK button, and the time-varying analysis will be enabled in the user interface.

If you have chosen Whole measurement as the analysis mode in the preferences, then the time-
varying analysis is performed for the whole recording. If you have selected Analysis samples as the
analysis mode, then you need to adjust one analysis sample to cover the measurement range that you
wish to analyse. Here the analysis mode has been set to Whole measurement. For the same reasons
as in the first sample run we use again the smoothness priors detrending method with the Lambda value
of 500 (to remove the baseline from HRV analysis).

The time-varying analysis results can then be viewed in the results view segment (press the Time-
varying button). The variable in view can be selected from the two pop up buttons on the left hand corner

Kubios HRV (ver. 3.1)



4.2. Sample run 2 - Time-varying analysis 38

of the results view. For example, in Fig. A.5 the time-varying spectrum from frequency-domain variables
list has been chosen for view. All time-domain and frequency-domain variables as well as most of the
nonlinear variables are included in time-varying parameters. The parameters are calculated using a
moving window, the width and time shift of which can be changed by editing the Window width and Grid
interval values. Here we have used a 150 second window with a 10 second shift (grid interval). The
frequency-domain variables, are obtained from a time-varying spectrum estimate for which there are two
different methods available. These are the spectrogram and the Kalman smoother spectrum estimate.
The spectrogram method is simply a moving window Fourier transformation method. The same moving
window settings as described above are used for computing the spectrogram. The Kalman smoother
method, on the other hand, is based on time-varying AR modelling and does not utilize the same kind
of moving window as the spectrogram. Thus, the window width value does not apply to the frequency-
domain variables if the Kalman smoother is used for spectrum estimation. The Grid interval is, however,
utilized for the Kalman smoother method as well.

The differences between the spectrogram and Kalman smoother methods have been discussed e.g.
in [51, 50]. In brief, it can be said that the Kalman smoother is computationally more complex but can yield
a better resolution than the spectrogram. The spectrogram is however more robust and requires only
the moving window settings to be defined. The Kalman smoother methods, on the other hand, requires
fixing both the adaptation coefficient and the AR model order. Note also that if ECG is measured, values
of EDR (ECG derived respiration) are illustrated on top of the time-varying spectrum. In this sample
run, the EDR curve (the green line on top of spectrogram on Fig. A.5) clearly illustrates the increase in
respiration rate during exercise.

The results of the time-varying analysis can be saved as in the first sample run. If the standard
analysis was disabled from the preferences window, only time-varying results will be included in the text
file, MAT-file and PDF file exports. In the PDF-file the time-varying results are presented in one page
shown in Fig. A.6. Time-varying results are written in the text file as illustrated in Fig. A.7. The MATLAB
MAT-file will include the TimeVar field, under which you can find the time trends of all computed HRV
parameters.
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Chapter 5

Beat detection, pre-processing and
analysis methods

5.1 Beat detection algorithms

5.1.1 QRS detector
In case ECG data is imported into Kubios HRV Premium, the R-wave time instants are automatically
detected by applying a built-in QRS detection algorithm. This in-house developed detection algorithm is
based on the Pan–Tompkins algorithm [40]. The detector consists of a preprocessing part followed by
decision rules.The preprocessing part includes bandpass filtering of the ECG (to reduce power line noise,
baseline wander and other noise components), squaring of the data samples (to highlight peaks) and
moving average filtering (to smooth close-by peaks). The decision rules include amplitude threshold and
comparison to expected value between adjacent R-waves. Both of these rules are adjusted adaptively
every time a new R-wave is acceptably detected. Before R-wave time instant extraction, the R-wave is
interpolated at 2000 Hz to improve the time resolution of the detection. The up-sampling can significantly
improve the time resolution of R-wave detection when the sampling rate of the ECG is low.

5.1.2 Pulse wave detector
Pulse wave detector of Kubios HRV Premium is based on the matched filtering approach. Firstly maxi-
mum of 1st derivative representing the steepest part of the pulse wave is used for initial pulse location
estimation. Secondly, template for the pulse wave (and matched filter) is constructed using the initial
pulses. Decision of the final pulse wave locations are defined by comparing the filtered signal against
varying threshold and comparing normalized error between the template and PPG signal. Allowed nor-
malized error between template and pulse wave under inspection can be adjusted in software prefer-
ences. That is, the smaller the acceptance threshold percent is the more similar the pulse wave have to
be with the template in order to be accepted.

The accuracy of the pulse wave detection algorithm is shown in Fig 5.1. The left panel showing
the Bland-Altman plot illustrating the agreement between detected PP intervals and corresponding RR
intervals during a resting measurement. The right panel shows error percentages of commonly used
HRV parameters estimated PP interval compared to RR interval time series. Used dataset contains 20
healthy volunteers with wide age scale (20 to 50 years). Error between the RR and PP time series is
-0.01±5.16 ms (mean ± SD). This ±5 ms error in heart beat detection produces approximately ±10%
maximum errors to the HRV parameters.

5.2 Pre-processing of RR interval time series
Any artifact in the RR interval time series may interfere the analysis of these signals. The artifacts within
HRV signals can be divided into technical and physiological artifacts. The technical artifacts can include
missing or additional QRS complex detections and errors in R-wave occurrence times. These artifacts
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Figure 5.1: Accuracy of the PP interval vs. RR interval during resting measurement is presented on left
panel. In right panel, errors between the PRV and HRV parameters are presented. Blue box indicates
region between the 25-75 percentile and black lines are maximum and minimum value.

may be due to measurement artifacts or the computational algorithm. The physiological artifacts, on
the other hand, include ectopic beats and arrhythmic events. In order to avoid the interference of such
artifacts, the ECG recording and the corresponding event series should always be manually checked for
artifacts and only artifact-free sections should be included in the analysis [55]. Alternatively, if the amount
of artifact-free data is insufficient, proper interpolation methods can be used to reduce these artifacts,
see, e.g., [26, 27, 33]. Kubios HRV includes two methods for correcting any artefacts and ectopic beats
present in the RR interval data, which are described in Section 5.2.1.

Another common feature that can alter the analysis significantly are the slow linear or more complex
trends within the analysed time series. Such slow nonstationarities are characteristic for HRV signals and
should be considered before the analysis. The origins of nonstationarities in HRV are discussed, e.g.,
in [6]. Two kinds of methods have been used to get around the nonstationarity problem. In [61], it was
suggested that HRV data should be systematically tested for nonstationarities and that only stationary
segments should be analysed. Representativeness of these segments in comparison with the whole
HRV signal was, however, questioned in [19]. Other methods try to remove the slow nonstationary trends
from the HRV signal before analysis. The detrending is usually based on first order [28, 35] or higher
order polynomial [44, 35] models. In addition, Kubios HRV software includes an advanced detrending
procedure originally presented in [54]. This approach is based on smoothness priors regularization and
is described in Section 5.2.2.

5.2.1 Artefact correction methods
Kubios HRV includes two alternative methods: 1) Threshold based correction, in which the artefacts and
ectopic beats are simply corrected by comparing every RR interval value against a local average interval;
2) Automatic correction, in which artefacts are detected from a time series consisting of differences
between successive RR intervals. Details of these correction method are given below. In addition to
these RR interval based correction methods, the R-wave detections can be corrected manually when
ECG data is used for analysis (see Section 3.2).

Threshold based artefact correction algorithm

The threshold based artefact correction algorithm compares every RR interval value against a local
average interval. The local average is obtained by median filtering the RR interval time series, and thus,
the local average is not affected by single outliers in RR interval time series. If an RR interval differs from
the locale average more than a specified threshold value, the interval is identified as an artefact and is
marked for correction. The threshold value can be selected from:
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• Very low: 0.45 sec (threshold in seconds)

• Low: 0.35 sec

• Medium: 0.25 sec

• Strong: 0.15 sec

• Very strong: 0.05 sec

• Custom, for setting a custom threshold in seconds

For example, the “Medium” correction level will identify all RR intervals that are larger/smaller than 0.25
seconds compared to the local average. The correction is made by replacing the identified artefacts with
interpolated values using a cubic spline interpolation.

It should be noted, that Kubios HRV adjusts these threshold with mean heart rate. That is, thresh-
olds shown above are for 60 beats/min heart rate, but for higher heart rates the thresholds are smaller
(because the variability is expected to decrease when HR increases) and vice versa for lower heart rates.

Because the artefacts are identified by simple thresholding, this correction method should not be
duplicated between subjects because normal variability is highly individual. Instead, the correction level
should be adjusted individually as follows. First, identify if there are any artefacts in your data that should
be corrected. If there are artefacts, then select the lowest possible correction level, which identifies the
artefacts but does not identify too many normal RR intervals as artefacts.

Automatic artefact correction algorithm

In automatic correction algorithm artefacts are detected from dRR series, which is a time series consist-
ing of differences between successive RR intervals. The dRR series provides a robust way to separate
ectopic and misplaced beats from the normal sinus rhythm. To separate ectopic and normal beats, time
varying threshold (Th) is used. To ensure adaptation to different HRV levels, the threshold is estimated
from the time varying distribution of the dRR series. For each beat, quartile deviation of the 90 surround-
ing beats is calculated and multiplied by factor 5.2. Beats within this range cover 99.95% of all beats if
RR series is normally distributed. However, RR interval series is not often normally distributed, and thus,
also some of the normal beats exceed the threshold. Therefore, decision algorithm is needed to detect
artefact beats.

Ectopic beats form negative positive negative (NPN) or positive negative positive (PNP) patterns to
the dRR series. Similarly long beats form positive negative (PN) and short beats negative positive (NP)
patterns to the dRR series. Only dRR segments containing these patterns are classified as artefact beats.
Missed or extra beats are detected by comparing current RR value with median of the surrounding 10
RR interval values (medRR). A missed beat is detected if current RR interval (RR(i)) satisfies condition∣∣∣∣RR(i)

2
−medRR(i)

∣∣∣∣ < 2Th (5.1)

and an extra beat is detected if two successive RR intervals (RR(i) and RR(i+1)) satisfies condition

|RR(i) +RR(i+ 1)−medRR(i)| < 2Th. (5.2)

Correction of detected artefacts Detected ectopic beats are corrected by replacing corrupted RR
times by interpolated RR values. Similarly too long and short beats are corrected by interpolating new
values to the RR time series. Missed beats are corrected by adding new R-wave occurrence time and
extra beats are simply corrected by removing extra R-wave detection and recalculating RR interval se-
ries.

5.2.2 Smoothness priors based detrending approach
The theory behind the smoothness priors detrending methods inluded in Kubios HRV is described below.
For more details, see [54].

Let z ∈ RN denote the RR interval time series which can be considered to consist of two components

z = zstat + ztrend (5.3)
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where zstat is the nearly stationary RR interval series of interest, ztrend is the low frequency aperiodic trend
component, and N is the number of RR intervals. Suppose that the trend component can be modeled
with a linear observation model as

ztrend = Hθ + e (5.4)

where H ∈ RN×p is the observation matrix, θ ∈ Rp are the regression parameters, and e is the observa-
tion error. The task is then to estimate the parameters by some fitting procedure so that ẑtrend = Hθ̂ can
be used as the estimate of the trend. The properties of the estimate depend strongly on the properties
of the basis vectors (columns of the matrix H) in the fitting. A widely used method for the solution of the
estimate θ̂ is the least squares method. However, a more general approach for the estimation of θ̂ is
used here. That is, the so-called regularized least squares solution

θ̂λ = argmin
θ

{
∥z −Hθ∥2 + λ2∥Dd(Hθ)∥2

}
(5.5)

where λ is the regularization parameter andDd indicates the discrete approximation of the d’th derivative
operator. This is clearly a modification of the ordinary least squares solution to the direction in which the
side norm ∥Dd(Hθ)∥ gets smaller. In this way, prior information about the predicted trend Hθ can be
implemented to the estimation. The solution of (5.5) can be written in the form

θ̂λ = (HTH + λ2HTDT
d DdH)−1HT z (5.6)

and the estimate for the trend which is to be removed as

ẑtrend = Hθ̂λ. (5.7)

The selection of the observation matrix H can be implemented according to some known properties
of the data z. For example, a generic set of Gaussian shaped functions or sigmoids can be used. Here,
however, the trivial choice of identity matrix H = I ∈ RN×N is used. In this case, the regularization part
of (5.5) can be understood to draw the solution towards the null space of the regularization matrix Dd.
The null space of the second order difference matrix contains all first order curves and, thus, D2 is a
good choice for estimating the aperiodic trend of RR series. With these specific choices, the detrended
nearly stationary RR series can be written as

ẑstat = z −Hθ̂λ = (I − (I + λ2DT
2 D2)

−1)z. (5.8)

In order to demonstrate the properties of the proposed detrending method, its frequency response is
considered. Equation (5.7) can be written as ẑstat = Lz, where L = I − (I + λ2DT

2 D2)
−1 corresponds

to a time-varying finite impulse response highpass filter. The frequency response of L for each discrete
time point, obtained as a Fourier transform of its rows, is presented in Fig. 5.2 (a). It can be seen that
the filter is mostly constant but the beginning and end of the signal are handled differently. The filtering
effect is attenuated for the first and last elements of z and, thus, the distortion of end points of data is
avoided. The effect of the smoothing parameter λ on the frequency response of the filter is presented in
Fig. 5.2 (b). The cutoff frequency of the filter decreases when λ is increased. Besides the λ parameter
the frequency response naturally depends on the sampling rate of signal z.

5.3 Analysis methods
In this section, the analysis methods used in the software are introduced. The presented methods are
mainly based on the guidelines given in [55]. The presentation of the methods is divided into four cat-
egories, i.e. time-domain, frequency-domain, nonlinear, and time-varying methods. The methods are
summarized in Table A.1.

5.3.1 Stress index and PNS/SNS indexes
The Baevsky’s stress index (SI) is computed according to the formula [4]

SI =
AMo× 100%
2Mo×MxDMn

(5.9)

Kubios HRV (ver. 3.1)



5.3. Analysis methods 43

Relative frequency Discrete time

(a) (b)

0
10

20

0

0.25

0.5
0

0.5

1
M

ag
ni

tu
de

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

M
ag

ni
tu

de

Relative frequency

Figure 5.2: a) Time-varying frequency response of L (N − 1 = 50 and λ = 10). Only the first half of
the frequency response is presented, since the other half is identical. b) Frequency responses, obtained
from the middle row of L (cf. bold lines), for λ = 1, 2, 4, 10, 20, 100, and 500. The corresponding cut-off
frequencies are 0.213, 0.145, 0.101, 0.063, 0.045, 0.021 and 0.010 times the sampling frequency.

where AMo is the so-called mode amplitude presented in percent, Mo is the mode (the most frequent
RR interval) and MxDMn is the variation scope reflecting degree of RR interval variability. The mode Mo
is simply taken as the median of the RR intervals. The AMo is obtained as the height of the normalised
RR interval histogram (bin width 50 msec) and MxDMn as the difference between longest and shortest
RR interval values. In order to make SI less sensitive to slow changes in mean heart rate (which would
increase the MxDMn and lower AMo), the very low frequency trend is removed from the RR interval
time series by using the smoothness priors method [54]. In addition, the square root of SI is taken to
transform the tailed distribution of SI towards normal distribution. The square root transformation also
makes the SNS index described below less sensitive to extreme SI values. The stress level zones with
(and without) the square root transformation are give in Section 3.2.3.

Parasympathetic nervous system (PNS) activity (vagal stimulation) is known to decrease heart rate
(i.e. increase mean RR interval) and increase HRV. More specifically, the efferent vagal activity is a
major contributor to the high frequency (HF) component of HRV [55] and the RMSSD (root mean square
of successive RR interval differences) reflects mainly these higher frequency fluctuations in RR interval.
The sympathetic nervous system (SNS) activity has opposite effect on HR and HRV, it increases HR and
decreases HRV. The low frequency (LF) component of HRV is considered to include both sympathetic
and parasympathetic influences, sympathetic activity probably being the more dominant component [55].
It should be noted that sympathetic activation results in tachycardia which is usually linked to marked
reduction in total power, whereas parasympathetic activation results in the opposite. The changes in total
power influence LF and HF powers in same direction, and thus, LF power in absolute units (ms2) cannot
be directly linked to sympathetic activity. The LF (and HF) powers in normalised units (n.u.) provide
a more direct link to sympathetic (and parasympathetic) nervous activities. In addition, the Baevsky’s
stress index is strongly linked to sympathetic nervous activity.

Thus, the PNS index computed in Kubios HRV is based on Mean RR, RMSSD and HF power (n.u.);
and SNS index is based on Mean HR, Baevsky’s stress index and LF power (n.u.). The parameter
values are compared to their normal values (Nunan et al. 2010, [37]) and the PNS and SNS indexes
are computated as mean deviation from normal values. Therefore, PNS and SNS index values of zero
mean that the parameters are on average equal to their normal values. Or if Mean RR, RMSSD and HF
power (n.u.) all are one SD below the normal values, then PNS index = −1. In summary, PNS and
SNS indexes provide reliable estimates of autonomic nervous system activities as compared to
normal resting values.

5.3.2 Time-domain methods
The time-domain methods are the simplest to perform since they are applied straight to the series of
successive RR interval values. The most evident such measure is the mean value of RR intervals (RR)
or, correspondingly, the mean HR (HR). In addition, several variables that measure the variability within
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the RR series exist. The standard deviation of RR intervals (SDNN) is defined as

SDNN =

√√√√ 1

N − 1

N∑
j=1

(RRj − RR)2 (5.10)

where RRj denotes the value of j’th RR interval and N is the total number of successive intervals. The
SDNN reflects the overall (both short-term and long-term) variation within the RR interval series, whereas
the standard deviation of successive RR interval differences (SDSD) given by

SDSD =
√
E{∆RR2

j} − E{∆RRj}2 (5.11)

can be used as a measure of the short-term variability. For stationary RR series E{∆RRj} =
E{RRj+1} −E{RRj} = 0 and SDSD equals the root mean square of successive differences (RMSSD)
given by

RMSSD =

√√√√ 1

N − 1

N−1∑
j=1

(RRj+1 − RRj)2. (5.12)

Another measure calculated from successive RR interval differences is the NN50 which is the number
of successive intervals differing more than 50 ms or the corresponding relative amount

pNN50 =
NN50
N − 1

× 100%. (5.13)

In addition to the above statistical measures, there are some geometric measures that are calculated
from the RR interval histogram. The HRV triangular index is obtained as the integral of the histogram
(i.e. total number of RR intervals) divided by the height of the histogram which depends on the selected
bin width. In order to obtain comparable results, a bin width of 1/128 seconds is recommended [55].
Another geometric measure is the TINN which is the baseline width of the RR histogram evaluated
through triangular interpolation, see [55] for details.

5.3.3 Frequency-domain methods
In the frequency-domain methods, a power spectrum density (PSD) estimate is calculated for the RR
interval series. The regular PSD estimators implicitly assume equidistant sampling and, thus, the RR
interval series is converted to equidistantly sampled series by interpolation methods prior to PSD esti-
mation. In the software a cubic spline interpolation method is used. In HRV analysis, the PSD estimation
is generally carried out using either FFT based methods or parametric AR modeling based methods.
For details on these methods see, e.g., [31]. The advantage of FFT based methods is the simplicity of
implementation, while the AR spectrum yields improved resolution especially for short samples. Another
property of AR spectrum that has made it popular in HRV analysis is that it can be factorized into sep-
arate spectral components. The disadvantages of the AR spectrum are the complexity of model order
selection and the contingency of negative components in the spectral factorization. Nevertheless, it may
be advantageous to calculate the spectrum with both methods to have comparable results.

In this software, the HRV spectrum is calculated with FFT based Welch’s periodogram method and
with the AR method. Spectrum factorization in AR method is optional. In the Welch’s periodogram
method the HRV sample is divided into overlapping segments. The spectrum is then obtained by aver-
aging the spectra of these segments. This method decreases the variance of the FFT spectrum.

Kubios HRV includes also the Lomb-Scargle periodogram [14], which differs from the Welch’s peri-
odogram in the sense that it does not assume equidistant sampling and is thus computed directly from the
non-interpolated RR interval time series. The variance of the Lomb-Scargle periodogram is decreased
by smoothing the periodogram using MA-filering (the window width of the MA-filter can be adjusted in
software preferences).

The generalized frequency bands in case of short-term HRV recordings are the very low frequency
(VLF, 0–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.4 Hz). The
frequency-domain measures extracted from the PSD estimate for each frequency band include absolute
and relative powers of VLF, LF, and HF bands, LF and HF band powers in normalized units, the LF/HF
power ratio, and peak frequencies for each band (see Table A.1). In the case of FFT spectrum, absolute
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power values for each frequency band are obtained by simply integrating the spectrum over the band
limits. In the case of AR spectrum, on the other hand, if factorization is enabled distinct spectral com-
ponents emerge for each frequency band with a proper selection of the model order and the absolute
power values are obtained directly as the powers of these components. If factorization is disabled the AR
spectrum powers are calculated as for the FFT spectrum. The band powers in relative and normalized
units are obtained from the absolute values as described in Table A.1.

5.3.4 Nonlinear methods
Considering the complex control systems of the heart it is reasonable to assume that nonlinear mecha-
nisms are involved in the genesis of HRV. The nonlinear properties of HRV have been analysed using
measures such as Poincaré plot [8, 9], approximate and sample entropy [47, 17], detrended fluctua-
tion analysis [41, 42], correlation dimension [20, 22], and recurrence plots [60, 57, 62]. During the last
years, the number of studies utilizing such methods have increased substantially. The downside of these
methods is still, however, the difficulty of physiological interpretation of the results.

Poincaré plot

One commonly used nonlinear method that is simple to interpret is the so-called Poincaré plot. It is a
graphical representation of the correlation between successive RR intervals, i.e. plot of RRj+1 as a func-
tion of RRj as described in Fig. 5.3. The shape of the plot is the essential feature. A common approach
to parameterize the shape is to fit an ellipse to the plot as shown in Fig. 5.3. The ellipse is oriented
according to the line-of-identity (RRj = RRj+1) [8]. The standard deviation of the points perpendicular
to the line-of-identity denoted by SD1 describes short-term variability which is mainly caused by RSA. It
can be shown that SD1 is related to the time-domain measure SDSD according to [8]

SD12 =
1
2
SDSD2. (5.14)

The standard deviation along the line-of-identity denoted by SD2, on the other hand, describes long-term
variability and has been shown to be related to time-domain measures SDNN and SDSD by [8]

SD22 = 2SDNN2 − 1
2
SDSD2. (5.15)

The standard Poincaré plot can be considered to be of the first order. The second order plot would be
a three dimensional plot of values (RRj ,RRj+1,RRj+2). In addition, the lag can be bigger than 1, e.g.,
the plot (RRj ,RRj+2).

Approximate entropy

Approximate entropy (ApEn) measures the complexity or irregularity of the signal [17, 47]. Large values
of ApEn indicate high irregularity and smaller values of ApEn more regular signal. The ApEn is computed
as follows.

First, a set of length m vectors uj is formed

uj = (RRj ,RRj+1, . . . ,RRj+m−1), j = 1, 2, . . . N −m+ 1 (5.16)

where m is called the embedding dimension and N is the number of measured RR intervals. The dis-
tance between these vectors is defined as the maximum absolute difference between the corresponding
elements, i.e.,

d(uj , uk) = max
{
|RRj+n − RRk+n|

∣∣n = 0, . . . ,m− 1
}
. (5.17)

Next, for each uj the relative number of vectors uk for which d(uj , uk) ≤ r is calculated. This index is
denoted with Cm

j (r) and can be written in the form

Cm
j (r) =

nbr of
{
uk

∣∣ d(uj , uk) ≤ r
}

N −m+ 1
∀ k. (5.18)
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Figure 5.3: Poincaré plot analysis with the ellipse fitting procedure. SD1 and SD2 are the standard
deviations in the directions x1 and x2, where x2 is the line-of-identity for which RRj = RRj+1.

Due to the normalization, the value of Cm
j (r) is always smaller or equal to 1. Note that the value is,

however, at least 1/(N −m+ 1) since uj is also included in the count. Then, take the natural logarithm
of each Cm

j (r) and average over j to yield

Φm(r) =
1

N −m+ 1

N−m+1∑
j=1

lnCm
j (r). (5.19)

Finally, the approximate entropy is obtained as

ApEn(m, r,N) = Φm(r)− Φm+1(r). (5.20)

Thus, the value of the estimate ApEn depends on three parameters, the length m of the vectors uj ,
the tolerance value r, and the data length N . In this software the default value of m is set to be m = 2.
The length N of the data also affects ApEn. When N is increased the ApEn approaches its asymptotic
value. The tolerance r has a strong effect on ApEn and it should be selected as a fraction of the standard
deviation of the data (SDNN). This selection enables the comparison of different data types. A common
selection for r is r = 0.2SDNN , which is also the default value in this software.

Sample entropy

Sample entropy (SampEn) is similar to ApEn, but there are two important differences in its calculation
[47, 25]. For ApEn, in the calculation of the number of vectors uk for which d(uj , uk) ≤ r also the vector
uj itself is included. This ensures that Cm

j (r) is always larger than 0 and the logarithm can be applied, but
at the same time it makes ApEn to be biased. In sample entropy the self-comparison of uj is eliminated
by calculating Cm

j (r) as

Cm
j (r) =

nbr of
{
uk

∣∣ d(uj , uk) ≤ r
}

N −m
∀ k ̸= j. (5.21)

Now the value of Cm
j (r) will be between 0 and 1. Next, the values of Cm

j (r) are averaged to yield

Cm(r) =
1

N −m+ 1

N−m+1∑
j=1

Cm
j (r) (5.22)

and the sample entropy is obtained as

SampEn(m, r,N) = ln (Cm(r)/Cm+1(r)). (5.23)
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The default values set for the embedding dimension m and for the tolerance parameter r in the
software are the same as those for the approximate entropy calculation. Both ApEn and SampEn are
estimates for the negative natural logarithm of the conditional probability that a data of length N , having
repeated itself within a tolerance r for m points, will also repeat itself for m + 1 points. SampEn was
designed to reduce the bias of ApEn and has a closer agreement with the theory for data with known
probabilistic content [25].

Multiscale entropy (MSE)

Multiscale entropy (MSE) is an extension of SampEn in the sense that it incorporates two procedures
[10]

1. A coarse-graining process is applied to the RR interval time series. Multiple coarse-grained time
series are constructed for the time series by averaging the data points within non-overlapping win-
dows of increasing length τ , where τ represents the scale factor and is selected to range between
τ = 1, 2, . . . , 20. The length of each coarse-grained time series is N/τ , where N is the number
of RR intervals in the data. For scale τ = 1, the coarse-grained time series is simply the original
beat-to-beat RR interval time series.

2. SampEn is calculated for each coarse-grained time series. SampEn as a function of the scale
factor produces the MSE. MSE for scale factor τ = 1 returns standard SampEn (computed from
the original data points).

Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) measures the correlation within the signal. The correlation is ex-
tracted for different time scales as follows [41]. First, the RR interval time series is integrated

y(k) =

k∑
j=1

(RRj − RR), k = 1, . . . , N (5.24)

where RR is the average RR interval. Next, the integrated series is divided into segments of equal length
n. Within each segment, a least squares line is fitted into the data. Let yn(k) denote these regression
lines. Next the integrated series y(k) is detrended by subtracting the local trend within each segment
and the root-mean-square fluctuation of this integrated and detrended time series is calculated by

F (n) =

√√√√ 1

N

N∑
k=1

(y(k)− yn(k))2. (5.25)

This computation is repeated over different segment lengths to yield the index F (n) as a function of
segment length n. Typically F (n) increases with segment length. A linear relationship on a double log
graph indicates presence of fractal scaling and the fluctuations can be characterized by scaling exponent
α (the slope of the regression line relating logF (n) to logn. Different values of α indicate the following

α = 1.5: Brown noise (integral of white noise)
1 < α < 1.5: Different kinds of noise
α = 1: 1/f noise
0.5 < α < 1: Large values are likely to be followed by large value and vice versa
α = 0.5: white noise
0 < α < 0.5: Large value is likely to be followed by small value and vice versa

Typically, in DFA the correlations are divided into short-term and long-term fluctuations. In the soft-
ware, the short-term fluctuations are characterized by the slope α1 obtained from the (logn,logF (n))
graph within range 4 ≤ n ≤ 16 (default values). Correspondingly, the slope α2 obtained by default from
the range 16 ≤ n ≤ 64 characterizes long-term fluctuations, see Fig. 5.4.
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Figure 5.4: Detrended fluctuation analysis. A double log plot of the index F (n) as a function of segment
length n. α1 and α2 are the short term and long term fluctuation slopes, respectively.

Correlation dimension

Another method for measuring the complexity or strangeness of the time series is the correlation di-
mension which was proposed in [18]. The correlation dimension is expected to give information on the
minimum number of dynamic variables needed to model the underlying system and it can be obtained
as follows.

Similarly as in the calculation of approximate and sample entropies, form length m vectors uj

uj = (RRj ,RRj+1, . . . ,RRj+m−1), j = 1, 2, . . . , N −m+ 1 (5.26)

and calculate the number of vectors uk for which d(uj , uk) ≤ r, that is

Cm
j (r) =

nbr of
{
uk

∣∣ d(uj , uk) ≤ r
}

N −m+ 1
∀ k (5.27)

where the distance function d(uj , uk) is now defined as

d(uj , uk) =

√√√√ m∑
l=1

(uj(l)− uk(l))
2
. (5.28)

Next, an average of the term Cm
j (r) is taken

Cm(r) =
1

N −m+ 1

N−m+1∑
j=1

Cm
j (r) (5.29)

which is the so-called correlation integral. The correlation dimension D2 is defined as the limit value

D2(m) = lim
r→0

lim
N→∞

logCm(r)

log r
. (5.30)

In practice this limit value is approximated by the slope of the regression curve (log r, logCm(r)) [22].
The slope is calculated from the linear part of the log-log plot, see Fig. 5.5. The slope of the regression
curves tend to saturate on the finite value of D2 when m is increased. In the software, a default value of
m = 10 was selected for the embedding.
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Figure 5.5: Approximation of the correlation dimension D2 from the (log r, logCm(r)) plot.

Recurrence plot analysis

Yet another approach, included in the software, for analyzing the complexity of the time series is the
so-called recurrence plot (RP) analysis. In this approach, vectors

uj = (RRj ,RRj+τ , . . . ,RRj+(m−1)τ ), j = 1, 2, . . . , N − (m− 1)τ (5.31)

where m is the embedding dimension and τ the embedding lag. The vectors uj then represent the
RR interval time series as a trajectory in m dimensional space. A recurrence plot is a symmetrical
[N − (m− 1)τ ]× [N − (m− 1)τ ] matrix of zeros and ones. The element in the j’th row and k’th column
of the RP matrix, i.e. RP(j,k), is 1 if the point uj on the trajectory is close to point uk. That is

RP(j, k) =
{

1, d(uj − uk) ≤ r
0, otherwise (5.32)

where d(uj , uk) is the Euclidean distance given in (5.28) and r is a fixed threshold. The structure of the
RP matrix usually shows short line segments of ones parallel to the main diagonal. The lengths of these
diagonal lines describe the duration of which the two points are close to each other. An example RP for
HRV time series is presented in Fig. 5.6. Methods for quantifying recurrence plots were proposed in
[60]. The methods included in this software are introduced below.

In the software the following selections were made. The embedding dimension and lag were selected
to be m = 10 (default value) and τ = 1 (fixed), respectively. The threshold distance r was selected to
be

√
mSD (default value), where SD is the standard deviation of the RR time series. The selection are

similar to those made in [11].
The first quantitative measure of RP is the recurrence rate (REC) which is simply the ratio of ones

and zeros in the RP matrix. The number of elements in the RP matrix for τ = 1 is equal to N −m + 1
and the recurrence rate is simply given as

REC =
1

(N −m+ 1)2

N−m+1∑
j,k=1

RP(j, k). (5.33)

The recurrence rate can also be calculated separately for each diagonal parallel to the line-of-identity
(main diagonal). The trend of REC as a function of the time distance between these diagonals and the
line-of-identity describes the fading of the recurrences for points further away.

The rest of the RP measures consider the lengths of the diagonal lines. A threshold lmin = 2 is used
for excluding the diagonal lines formed by tangential motion of the trajectory. The maximum line length
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Figure 5.6: Recurrence plot matrix for HRV time series (black = 1 and white = 0).

is denoted lmax and its inverse, the divergence,

DIV =
1

lmax
(5.34)

has been shown to correlate with the largest positive Lyapunov exponent [57]. The average diagonal
line length, on the other hand, is obtained as

lmean =

∑lmax
l=lmin

lNl∑lmax
l=lmin

Nl

(5.35)

where Nl is the number of length l lines. The determinism of the time series is measured by the variable

DET =

∑lmax
l=lmin

lNl∑N−m+1
j,k=1 RP(j, k)

. (5.36)

Finally, the Shannon information entropy of the line length distribution is defined as

ShanEn = −
lmax∑

l=lmin

nl lnnl (5.37)

where nl is the number of length l lines divided by the total number of lines, that is

nl =
Nl∑lmax

l′=lmin
Nl′

. (5.38)

5.3.5 Time-varying methods
The time-varying methods of the software include the trends of the time-domain measures RR, SDNN,
HR, SD of HR, RMSSD, NN50, and pNN50. For frequency-domain measures the trends are obtained for
VLF, LF, and HF peak frequencies, VLF, LF, and HF band powers, and LF/HF ratio. In addition, trends are
calculated for the nonlinear measures ApEn and SampEn. The trends for the time-domain and nonlinear
measures are obtained by using a moving window, the length and shift of which can be changed.

The trends of the frequency-domain measures are computed based on a time-varying spectrum es-
timate. The time-varying spectrum is estimated either by using the moving window FFT, which is also
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known as the spectrogram method, or with the Kalman smoother algorithm. The Kalman smoother algo-
rithm is an iterative algorithm for estimating the parameters of a time-varying model. In the software, a
time-varying AR model is used to model the HRV signal. The adaptation of the Kalman smoother algo-
rithm affecting on the resolution of the spectrum can also be altered. For details on the Kalman smoother
spectrum estimation see [50].
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A.1 Summary of HRV parameters included in Kubios HRV

Table A.1: Summary of the HRV measures calculated by Kubios HRV software (* indicates that only
preview is available in Standard version; ** indeicates that parameters are available only in Premium
version).

Parameter Units Description References
Overview
Stress index - Square root of Baevsky’s stress index (Eq. (5.9)) [4]
PNS index - Parasympathetic nervous system activity compared to normal resting values
SNS index - Sympathetic nervous system activity compared to normal resting values
HR zones* [%] Time spent in Maximum, Hard, Moderate, Light, Very light, and Inactive HR zones
Stress zones* [%] Time spent in Very high, High, Elevated, Normal, and Low stress levels
RMSSD zones** [%] Time spent in Very low, Low, Lowered, Normal, and High RMSSD levels
Energy exp.* [kcal] Basal metabolic rate (BMR) using the Mifflin-St Jeor formula and energy expenditure (EE)

estimated using Keytel’s model (Eq. (3.1)-(3.4)) [23]
Time-Domain
RR [ms] The mean of RR intervals
STD RR (SDNN) [ms] Standard deviation of RR intervals [Eq. (5.10)]
HR [1/min] The mean heart rate
STD HR [1/min] Standard deviation of instantaneous heart rate values
Min & Max HR [1/min] Minimum and maximum HR computed using N beat moving average (default value: N = 5)
RMSSD [ms] Square root of the mean squared differences between successive RR intervals [Eq. (5.12)]
NNxx [beats] Number of successive RR interval pairs that differ more than xx ms (default value: xx= 50)
pNNxx [%] NNxx divided by the total number of RR intervals [Eq. (5.13)]
HRV triangular in-
dex

- The integral of the RR interval histogram divided by the height of the histogram [55]

TINN [ms] Baseline width of the RR interval histogram [55]
SDANN [ms] Standard deviation of the averages of RR intervals in 5-min segments [55]
SDNNI [ms] Mean of the standard deviations of RR intervals in 5-min segments [55]
Frequency-Domain
Spectrum Welch’s (or Lomb-Scargle*) periodogram and AR spectrum estimates
Peak frequency [Hz] VLF, LF, and HF band peak frequencies
Absolute power [ms2] Absolute powers of VLF, LF, and HF bands
Absolute power [log] Natural logarithm transformed values of absolute powers of VLF, LF, and HF bands
Relative power [%] Relative powers of VLF, LF, and HF bands

VLF [%] = VLF [ms2]/total power [ms2]× 100%
LF [%] = LF [ms2]/total power [ms2]× 100%
HF [%] = HF [ms2]/total power [ms2]× 100%

Normalized power [n.u.] Powers of LF and HF bands in normalised units
LF [n.u.] = LF [ms2]/(total power [ms2]− VLF [ms2])
HF [n.u.] = HF [ms2]/(total power [ms2]− VLF [ms2])

LF/HF - Ratio between LF and HF band powers
EDR** [Hz] ECG derived respiration (available only if ECG data used for HRV analysis)
Nonlinear
SD1 [ms] In Poincaré plot, the standard deviation perpendicular to the line-of-identity [8, 9]
SD2 [ms] In Poincaré plot, the standard deviation along the line-of-identity
SD2/SD1 - Ratio between SD2 and SD1
ApEn - Approximate entropy [Eq. (5.20)] [47, 17]
SampEn - Sample entropy [Eq. (5.23)] [47]
DFA, α1 - In detrended fluctuation analysis, short term fluctuation slope [41, 42]
DFA, α2 - In detrended fluctuation analysis, long term fluctuation slope
D2** - Correlation dimension [Eq. (5.30)] [20, 22]
RPA**: Recurrence plot analysis: [60, 11, 62]
Lmean [beats] Mean line length [Eq. (5.35)]
Lmax [beats] Maximum line length
REC [%] Recurrence rate [Eq. (5.33)]
DET [%] Determinism [Eq. (5.36)]
ShanEn - Shannon entropy [Eq. (5.37)]

MSE** - Multiscale entropy for scale factor values τ = 1, 2, . . . , 20 [10]
Time-Varying**
Overview parameters: Sress index, PNS index, SNS index
Time-domain parameters: RR, SDNN, HR, STD HR, Min HR, Max HR, RMSSD, NNxx, pNNxx, HRV tri ind., TINN
Frequency-domain parameters: Time-varying spectrum (Spectrogram); VLF, LF and HF peak frequencies;

VLF, LF and HF powers in ms2, log and %; LF and HF powers in n.u.; LF/HF ratio; EDR
Nonlinear parameters: SD1, SD2, SD2/SD1, ApEn, SampEn, DFA α1 and α2
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A.2 Kubios HRV sample run figures

Figure A.1: Analysis of lying (supine rest) and standing periods of an orthostatic test (healthy young
male) using Kubios HRV Premium (Sample run 1).
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Figure A.2: Results for the lying period (supine rest) of an orthostatic test (healthy young male). Ku-
bios HRV Premium report sheet including all the time-domain, frequency-domain and nonlinear analysis
results calculated by the software (Sample run 1).
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Figure A.3: Results for the standing period of an orthostatic test (healthy young male). Kubios HRV
Premium report sheet including all the time-domain, frequency-domain and nonlinear analysis results
calculated by the software (Sample run 1).
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Figure A.4: Results for the supine and standing periods of an orthostatic test saved as a text file (Sample
run 1).
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Figure A.5: Analysis of the orthostatic test (6-min supine rest followed by 6-min standing; healthy young
male) using time-varying analysis options ofKubios HRV Premium (Sample run 2).
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Figure A.6: Report sheet with time-varying results for the orthostatic test (6-min supine rest followed by 6-
min standing; healthy young male) using time-varying analysis options ofKubios HRV Premium (Sample
run 2).
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Figure A.7: Time-varying results for the orthostatic test saved as a text file using time-varying analysis
options ofKubios HRV Premium (Sample run 2).
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